雙機器人齒盤協(xié)同堆焊生產線關鍵技術研究
發(fā)布時間:2018-06-08 11:41
本文選題:雙機器人協(xié)同 + CMT曲面堆焊工藝; 參考:《浙江大學》2017年碩士論文
【摘要】:履帶式裝甲車是一種集火力、機動、防護性等特點于一體的軍事車輛。履帶驅動輪作為履帶式裝甲車行走系統(tǒng)的重要組成部分,其加工精度以及耐磨特性直接影響車輛的行走穩(wěn)定性和可靠性。在制造過程中,履帶驅動輪需在齒形上堆焊上耐磨金屬材料。論文針對目前齒盤表面堆焊工藝多為手動或半自動,焊接效率低下,加工精度不高,焊后需打磨等問題,研究CMT曲面堆焊工藝,提出齒盤表面近凈成形堆焊加工方法,并集成雙機器人協(xié)同堆焊技術、CMT無飛濺焊接技術、焊接質量在線檢測技術以及總線控制技術,最終形成一套全自動的雙機器人齒盤協(xié)同堆焊生產線,實現(xiàn)齒盤的自動上料、協(xié)同焊接、焊后質量檢測以及分料碼垛。首先,闡述了論文的研究背景與研究意義,綜述了堆焊技術的研究現(xiàn)狀以及焊接質量檢測技術的研究現(xiàn)狀,簡要概述了論文的主要研究內容與各章安排,隨后提出了論文的總體框架。然后,分析了熔化極氣體保護焊的熔滴過渡過程,闡述了 CMT可控短路過渡技術,確定了基于田口方法和灰度系統(tǒng)理論的曲面堆焊工藝參數(shù)優(yōu)化流程,并概述了田口方法基本理論和灰色系統(tǒng)理論。接著,分析了齒盤堆焊加工要求,提出了雙機器人齒盤協(xié)同生產線的設計目標,在此基礎上給出了生產線的總體設計方案,并分別從上料工位、焊接工位、視覺檢測工位、碼垛工位和系統(tǒng)總控單元入手詳細設計了生產線各部分,搭建了基于PC的軟PLC系統(tǒng)的硬件平臺,詳細設計了工業(yè)現(xiàn)場控制程序、焊接質量檢測程序以及人機交互界面,形成一套完整的雙機器人齒盤協(xié)同堆焊生產線。最后,分析機器人齒面堆焊特點,將曲面堆焊模型近似為平面堆焊模型,并在充分考慮工件堆焊技術要求的基礎上,采用田口方法和灰度系統(tǒng)理論獲得機器人CMT平面堆焊參數(shù),最終通過試驗確定齒面堆焊參數(shù),實現(xiàn)齒盤表面近凈成形堆焊加工。論文研制了雙機器人齒盤協(xié)同堆焊生產線,經(jīng)試運行檢驗后,各項指標均滿足設計要求。
[Abstract]:Tracked armored vehicle is a kind of military vehicle with the characteristics of firepower, maneuverability and protection. Caterpillar drive wheel is an important part of tracked armored vehicle walking system. Its machining accuracy and wear resistance directly affect the running stability and reliability of the vehicle. In the manufacturing process, the caterpillar drive wheel needs to surfacing on the tooth profile on the wear-resistant metal material. Aiming at the problems of manual or semi-automatic surfacing welding technology, low welding efficiency, low machining precision and need to be polished after welding, the paper studies the surfacing welding technology of CMT curved surface, and puts forward the method of surface surfacing welding. The technology of CMT without spatter welding, on-line inspection of welding quality and bus control technology are integrated. Finally, a set of automatic double-robot cooperative surfacing welding production line is formed to realize the automatic feeding of tooth disk. Cooperative welding, quality inspection after welding and stacking of separate materials. First of all, the research background and significance of the paper are described, the research status of surfacing technology and welding quality testing technology are summarized, and the main research content and the arrangement of each chapter are briefly summarized. Then the overall framework of the paper is proposed. Then, the droplet transfer process of gas shielded arc welding is analyzed, the CMT controlled short circuit transfer technology is described, and the optimization process of surface surfacing parameters based on Taguchi method and gray system theory is determined. The basic theory of Taguchi method and the theory of grey system are summarized. Then, the paper analyzes the requirements of tooth plate surfacing welding, and puts forward the design goal of the double robot tooth disk cooperative production line. On this basis, the overall design scheme of the production line is given, and the feeding, welding and visual inspection stations are given respectively. Each part of the production line is designed in detail, the hardware platform of the soft PLC system based on PC is built, and the industrial field control program, welding quality detection program and man-machine interface are designed in detail. To form a complete double robot tooth plate co-surfacing production line. Finally, the characteristics of robot tooth surfacing welding are analyzed, and the curved surfacing model is approximate to the plane surfacing welding model. On the basis of fully considering the technical requirements of workpiece surfacing welding, the parameters of robot CMT plane surfacing welding are obtained by using Taguchi method and gray scale system theory. Finally, the tooth surface surfacing parameters are determined by experiments, and the near net forming surfacing process of tooth disk surface is realized. In this paper, a double robot joint surfacing production line is developed, and the test results show that each index can meet the design requirements.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TJ810.5;TG409
【參考文獻】
相關期刊論文 前10條
1 李磊;;汽車半軸45鋼的表層堆焊修復及焊后熱處理[J];工具技術;2016年01期
2 王明耀;劉奮成;賀立華;黃冠棋;錢魯泓;;層層正交路徑MIG堆焊316L不銹鋼的組織和力學性能[J];熱加工工藝;2015年17期
3 李紅英;;中心極限定理的教學[J];考試周刊;2015年31期
4 李勇;賀定勇;索紅莉;周正;蔣建敏;王智慧;;等離子弧堆焊TiC增強NiTi合金的組織和耐磨性[J];材料熱處理學報;2013年03期
5 張洪濤;馮吉才;胡樂亮;;CMT能量輸入特點與熔滴過渡行為[J];材料科學與工藝;2012年02期
6 李進;李剛;楊亞濤;;熱絲TIG焊在核電蒸汽發(fā)生器下封頭接管中的應用[J];焊接技術;2012年03期
7 劉鐵軍;劉貴強;袁廣;劉久良;韓文達;;埋弧堆焊技術在油缸生產中的應用研究[J];煤礦機械;2012年01期
8 趙云飛;成艾國;黃清敏;董立強;;田口魯棒設計用于汽車動力總成懸置系統(tǒng)[J];計算機仿真;2011年12期
9 劉思峰;J.福雷斯特;;不確定性系統(tǒng)與模型精細化誤區(qū)[J];系統(tǒng)工程理論與實踐;2011年10期
10 楊曉鋒;王順堯;張超;張海燕;姚婷婷;劉志兵;張江偉;;CMT工藝應用及其研究現(xiàn)狀[J];產業(yè)與科技論壇;2011年15期
,本文編號:1995669
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1995669.html
最近更新
教材專著