天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 鑄造論文 >

電磁鉚接過(guò)程鉚釘動(dòng)態(tài)塑性變形行為及組織性能研究

發(fā)布時(shí)間:2018-05-30 06:11

  本文選題:電磁鉚接 + 數(shù)值模擬 ; 參考:《哈爾濱工業(yè)大學(xué)》2016年博士論文


【摘要】:電磁鉚接是一種高速?zèng)_擊連接技術(shù)。相對(duì)于其他鉚接技術(shù),具有加載速度快、沖擊力大、鉚釘變形穩(wěn)定等優(yōu)點(diǎn),可有效解決復(fù)合材料鉚接時(shí)易被擠壓破壞,以及難變形鈦合金鉚釘氣動(dòng)鉚接加載力不足等技術(shù)瓶頸,該技術(shù)已應(yīng)用于航空航天產(chǎn)品之中,勢(shì)必將成為鉚接工藝的重點(diǎn)發(fā)展方向。本文基于電磁鉚接技術(shù)眾多優(yōu)點(diǎn)和航空航天領(lǐng)域需求,采用Φ10mm-2A10鋁合金鉚釘和Φ6mm-TA1鈦合金鉚釘,重點(diǎn)研究電磁鉚接過(guò)程中鉚釘動(dòng)態(tài)塑性變形行為、高應(yīng)變率下鉚釘微觀組織演化以及連接結(jié)構(gòu)力學(xué)性能、成形質(zhì)量;贏NSYS/LS-DYNA有限元分析軟件,建立電磁鉚接過(guò)程電磁場(chǎng)-力場(chǎng)-溫度場(chǎng)耦合數(shù)值模擬模型。以綜合考慮應(yīng)變強(qiáng)化、應(yīng)變速率強(qiáng)化及溫度軟化對(duì)流變應(yīng)力影響的Johnson-Cook模型為鉚釘材料本構(gòu)關(guān)系,實(shí)時(shí)考慮電磁場(chǎng)、力場(chǎng)以及溫度場(chǎng)之間相互影響,對(duì)整個(gè)電磁鉚接過(guò)程進(jìn)行了系統(tǒng)分析。結(jié)果表明本文所建立的有限元模型與工藝試驗(yàn)結(jié)果相符,通過(guò)分析得到了很難實(shí)測(cè)的磁壓力分布、應(yīng)變速率變化和溫度場(chǎng)分布等規(guī)律。磁壓力時(shí)空分布表明磁壓力以衰減正弦波形式變化,且在驅(qū)動(dòng)片與線圈厚度中心相對(duì)位置處達(dá)到峰值。數(shù)值模擬發(fā)現(xiàn)沿著鉚釘釘桿干涉量呈不均勻分布趨勢(shì)。針對(duì)這一現(xiàn)象,本文結(jié)合彈塑性力學(xué)和應(yīng)力波理論對(duì)鉚釘動(dòng)態(tài)塑性變形行為進(jìn)行分析,建立了相對(duì)干涉量分布模型,通過(guò)試驗(yàn)實(shí)測(cè)干涉量驗(yàn)證了模型精度。沿著鉚釘釘桿方向,越靠近鐓頭干涉量越大,并向半圓頭一側(cè)呈冪函數(shù)與指數(shù)函數(shù)乘積形式遞減分布。干涉量大小直接決定了板材孔壁周圍塑性變形區(qū)域大小,沿著板材厚度方向,塑性變形區(qū)域大小分布規(guī)律與干涉量分布相同。對(duì)于2A10鋁合金鉚釘電磁鉚接,絕熱剪切帶是鉚釘成形組織重要特征。絕熱剪切帶兩側(cè)金屬較大的徑向塑性流動(dòng)速度差和絕熱溫升軟化效應(yīng)是絕熱剪切帶形成主要機(jī)制。另外,試驗(yàn)和數(shù)值模擬結(jié)果表明絕熱剪切帶優(yōu)先萌生于鐓頭對(duì)角位置,隨著變形量的增加而逐漸向鐓頭中心擴(kuò)展,并在鐓頭中心相交。最終形成的絕熱剪切帶寬度約為80μm,狹窄的絕熱剪切帶內(nèi)存在大量相互纏結(jié)的位錯(cuò),位錯(cuò)滑移作用使其內(nèi)部形成了寬度約0.8μm層片狀亞結(jié)構(gòu)。絕熱剪切帶內(nèi)部微觀組織及分布特征對(duì)鉚釘鐓頭性能分布具有較大影響。大量Al2Cu強(qiáng)化相和較高位錯(cuò)密度使得絕熱剪切帶處硬度明顯高于其他位置。絕熱剪切帶分布特征導(dǎo)致鐓頭徑向壓縮強(qiáng)度和高度方向拉伸強(qiáng)度分布不均,而鉚接后鐓頭平均抗壓縮屈服強(qiáng)度較原始鉚釘強(qiáng)度提高了81%,這對(duì)鉚接結(jié)構(gòu)實(shí)際承載能力具有積極的影響。對(duì)于TA1鈦合金鉚釘電磁鉚接,僅有鐓頭軸向變形量較大時(shí)才會(huì)出現(xiàn)絕熱剪切帶現(xiàn)象,絕熱剪切帶寬度約為10μm。鈦合金絕熱剪切帶內(nèi)部微觀組織演化仍以位錯(cuò)滑移機(jī)制為主導(dǎo),并且亞晶動(dòng)態(tài)旋轉(zhuǎn)機(jī)制導(dǎo)致絕熱剪切帶內(nèi)部形成了尺寸在100~200nm之間的等軸狀再結(jié)晶晶粒。整個(gè)鉚接結(jié)構(gòu)力學(xué)性能是評(píng)價(jià)其可靠性的重要標(biāo)準(zhǔn),對(duì)于單個(gè)Φ10mm-2A10鋁合金鉚釘?shù)碾姶陪T接結(jié)構(gòu),可承受最大剪切載荷和拉脫載荷分別為23.2kN和35kN,并且該鉚接結(jié)構(gòu)鐓頭高度在5~6mm之間時(shí)其力學(xué)性能最佳。而對(duì)于單個(gè)Φ6mm-TA1鈦合金鉚釘鉚接結(jié)構(gòu),可承受最大剪切載荷和拉脫載荷分別可達(dá)9.9kN和12.3k N。為了探索電磁鉚接技術(shù)工程化應(yīng)用,本文對(duì)比分析了具有同等抗剪切承載能力的Φ10mm-2A10鋁合金鉚釘和Φ6mm-30CrMnSi鋼制螺栓緊固件連接結(jié)構(gòu)。相對(duì)于螺接結(jié)構(gòu),鉚接結(jié)構(gòu)抗剪切載荷和拉脫載荷分別高出3.1%和40%,而單純從緊固件重量方面對(duì)比其總量輕15.8%。如果從比強(qiáng)度方面對(duì)比分析,鉚接結(jié)構(gòu)抗剪切和拉脫比強(qiáng)度分別高出22.6%和66.1%。因此,采用輕質(zhì)的電磁鉚接結(jié)構(gòu)代替比強(qiáng)度較低的螺接結(jié)構(gòu),既可提高連接結(jié)構(gòu)的可靠性,亦可實(shí)現(xiàn)明顯的減重效果,對(duì)航空航天領(lǐng)域裝配工藝具有重大的工程意義。
[Abstract]:Electromagnetic riveting is a high speed impact connection technology. Compared with other riveting technology, it has many advantages, such as fast loading speed, great impact force, and the stability of riveting. It can effectively solve the technical bottlenecks of the composite riveting, as well as the difficult deformation of the titanium alloy riveting, which has been applied to Aeronautics and Astronautics. In the product, it is bound to be the key development direction of riveting technology. Based on many advantages of the electromagnetic riveting technology and the needs of the aerospace field, the dynamic plastic deformation behavior of rivet in the electromagnetic riveting process and the microstructure evolution of rivet under the high strain rate are focused on by using the 10mm-2A10 aluminum alloy rivets and the 6mm-TA1 titanium alloy rivets. Based on the ANSYS/LS-DYNA finite element analysis software, a numerical simulation model of electromagnetic field force field temperature field coupling is established based on the finite element analysis software. The constitutive relationship of the rivet material with the strain hardening, the strain rate strengthening and the effect of temperature softening on the rheological stress is taken into consideration, and the real time examination of the rivet material is made. Considering the interaction between the electromagnetic field, the force field and the temperature field, the whole electromagnetic riveting process is systematically analyzed. The results show that the finite element model established in this paper is in agreement with the result of the process test. Through analysis, the distribution of magnetic pressure, the change of strain rate and the distribution of temperature field are obtained, and the time and space distribution table of magnetic pressure is also obtained. The magnetic pressure changes in the form of the attenuated sine wave and reaches the peak value at the relative position of the driving plate and the center of the coil thickness. The numerical simulation shows that the interference of the rivet rod is unevenly distributed. In this paper, the dynamic plastic deformation behavior of the rivet is analyzed with the elastoplastic mechanics and the stress wave theory, and the phase is established. The model accuracy of the interference quantity distribution model is verified by the measured interference measurements. The closer the rivet rod direction is, the closer the interference amount to the upsetting head is, the smaller the distribution of the power function and the exponential function product of the half round head. The size of the circumference plastic deformation area of the plate hole wall is directly determined by the interference amount, along the thickness square of the plate. For 2A10 aluminum alloy rivet electromagnetic riveting, the adiabatic shear band is an important feature of rivet forming. The larger radial plastic flow velocity difference and adiabatic temperature rise softening effect on both sides of the adiabatic shear zone are the main mechanism of adiabatic shear band formation. The results of the value simulation show that the adiabatic shear band first occurs in the diagonal position of the upsetting head. With the increase of the deformation amount, it gradually extends to the center of the upsetting head and intersects at the center of upsetting head. The width of the adiabatic shear band is about 80 mu, and there is a large number of intertangled dislocation in the narrow adiabatic shear zone, and the dislocation slip action causes the internal formation of the adiabatic shear zone. The internal microstructure and distribution characteristics of the adiabatic shear zone have a great influence on the performance distribution of the rivet upsetting head. The hardness of the adiabatic shear band is obviously higher than that of the other positions. The adiabatic shear zone is characterized by the radial compressive strength and the high direction tension of the lead upsetting head. The distribution characteristics of the adiabatic shear band are obviously higher than that of the other positions. The tensile strength distribution is uneven, and the average compressive yield strength of the upsetting head after riveting is 81% higher than the original rivet strength, which has a positive effect on the actual bearing capacity of the riveted structure. For TA1 titanium alloy rivet electromagnetic riveting, only when the axial deformation of the upsetting head is large, an absolute heat shear zone will appear, and the width of the adiabatic shear band is about 10 mu. The internal microstructure evolution of the adiabatic shear zone of titanium alloy is still dominated by dislocation slip mechanism, and the dynamic rotation mechanism of the subcrystal leads to the formation of the equiaxed recrystallized grain between the adiabatic shear bands. The mechanical properties of the whole riveting structure is an important criterion for evaluating its reliability and for a single 10mm-2A10 aluminum alloy. The rivet riveting structure can bear the maximum shear load and the pull load of 23.2kN and 35kN respectively, and the mechanical performance of the riveting structure is the best when the upsetting height is between 5~6mm. The maximum shear load and the pull load can be reached to 9.9kN and 12.3k N. respectively for the exploration of the riveting structure of the riveting structure of the riveting structure. In the engineering application of electromagnetic riveting technology, this paper compares and analyzes the connection structure of the joint with the equal shear bearing capacity of the 10mm-2A10 aluminum alloy rivet and the bolt fastener of 6mm-30CrMnSi steel. Compared with the stud structure, the shear load and the pull load of the riveting structure are 3.1% and 40% higher respectively than the weight of the fasteners. If the total amount of light 15.8%. is compared and analyzed from the specific strength, the shear and the tensile strength of the riveting structure are higher than 22.6% and 66.1%., respectively. Therefore, the use of light electromagnetic riveting structure instead of the lower specific strength structure can not only improve the reliability of the connection structure, but also realize the obvious weight reduction effect, and the assembly process in the aerospace field It is of great engineering significance.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG391

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊顯杰,高慶,向陽(yáng)開(kāi),蔡力勛;紫銅的非比例循環(huán)塑性變形行為實(shí)驗(yàn)研究[J];金屬學(xué)報(bào);1998年10期

2 程利東;王傳杰;王春舉;郭斌;王振龍;;純銅徑向微壓縮塑性變形行為尺寸效應(yīng)(英文)[J];Transactions of Nonferrous Metals Society of China;2013年09期

3 馮林平,陳斌,鐘皓,劉培英,周鐵濤;β基Mg-12Li-3Al-5Zn合金的塑性變形行為[J];金屬熱處理;2005年03期

4 孫愛(ài)學(xué),周惠華,吳逸貴,林啟權(quán),侯向保;亞共晶白口鑄鐵塑性變形行為的觀察和分析[J];熱加工工藝;1993年05期

5 高巍;劉江南;王正品;石崇哲;;P92鋼塑性變形行為[J];西安工業(yè)大學(xué)學(xué)報(bào);2008年04期

6 耿林,馬宗義,姚忠凱;SiC_w/Al 復(fù)合材料的塑性變形行為研究[J];材料科學(xué)進(jìn)展;1991年03期

7 張小明;田鋒;殷為宏;;橡膠金屬的塑性變形行為[J];鈦工業(yè)進(jìn)展;2005年06期

8 李慧中;曾敏;梁霄鵬;劉詠;李洲;陳健美;;Ti-47Al-2Cr-0.2Mo合金多道次熱塑性變形行為[J];材料熱處理學(xué)報(bào);2012年04期

9 徐尹杰;蔡力勛;;棘輪和蠕變條件下材料的附加塑性變形行為研究[J];航空材料學(xué)報(bào);2007年06期

10 范淇元;;基于計(jì)算機(jī)技術(shù)軋制薄壁增壓容器的正交行為分析[J];熱加工工藝;2014年03期

相關(guān)會(huì)議論文 前1條

1 王桂松;耿林;鄭鎮(zhèn)洙;王德尊;姚忠凱;;SiCw/6061Al復(fù)合材料塑性變形行為[A];復(fù)合材料的現(xiàn)狀與發(fā)展——第十一屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集[C];2000年

相關(guān)博士學(xué)位論文 前2條

1 藍(lán)永庭;基于滑移與孿生的鎂合金晶體本構(gòu)關(guān)系及其細(xì)觀塑性行為研究[D];廣西大學(xué);2015年

2 張旭;電磁鉚接過(guò)程鉚釘動(dòng)態(tài)塑性變形行為及組織性能研究[D];哈爾濱工業(yè)大學(xué);2016年

相關(guān)碩士學(xué)位論文 前6條

1 黃曉華;純鈦塑性變形行為的晶體塑性有限元模擬[D];哈爾濱工業(yè)大學(xué);2010年

2 李游;雙晶Cu塑性變形行為的分子動(dòng)力學(xué)研究[D];哈爾濱工業(yè)大學(xué);2009年

3 李維建;納米晶鎢塑性變形行為及其影響因素的分子動(dòng)力學(xué)研究[D];哈爾濱工業(yè)大學(xué);2013年

4 仇珩宇;Ti/Al粉末體塑性變形行為及鍛造過(guò)程數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2012年

5 王熠昕;大型核電封頭用鋼20MnNiMo熱塑性變形行為的研究及應(yīng)用[D];重慶大學(xué);2012年

6 占家軍;TA15鈦合金熱塑性變形行為與組織演變[D];哈爾濱工業(yè)大學(xué);2006年

,

本文編號(hào):1954229

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1954229.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bb7e8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com