數(shù)控機(jī)床雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)設(shè)計(jì)與優(yōu)化研究
發(fā)布時(shí)間:2018-05-15 10:53
本文選題:雙絲杠驅(qū)動(dòng) + 進(jìn)給系統(tǒng) ; 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:數(shù)控機(jī)床朝著高速高精高穩(wěn)定性方向發(fā)展,對(duì)于大型移動(dòng)部件,傳統(tǒng)單絲杠驅(qū)動(dòng)難以做到重心驅(qū)動(dòng),在高速進(jìn)給時(shí)易發(fā)生振動(dòng),于是雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)在近幾年得到越來(lái)越多的應(yīng)用。雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)多了一套進(jìn)給部件,使其設(shè)計(jì)和建模分析方面變得更加復(fù)雜。本文針對(duì)數(shù)控機(jī)床雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)的設(shè)計(jì)與優(yōu)化進(jìn)行研究。在總結(jié)雙絲杠驅(qū)動(dòng)的優(yōu)缺點(diǎn)和相對(duì)單絲杠驅(qū)動(dòng)的設(shè)計(jì)區(qū)別的基礎(chǔ)上,提出了雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)的設(shè)計(jì)方法。構(gòu)建了考慮多重冗余約束、主要零部件和主要誤差源的雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)位置誤差模型和角度誤差模型?紤]移動(dòng)部件長(zhǎng)度、主軸箱位置等因素,對(duì)絲杠、導(dǎo)軌跨距組合進(jìn)行優(yōu)化,得到了單項(xiàng)目標(biāo)的最優(yōu)跨距組合區(qū)間系數(shù)以及針對(duì)多目標(biāo)的跨距最優(yōu)組合。開發(fā)了數(shù)控機(jī)床雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)設(shè)計(jì)與優(yōu)化工具集。第一章綜述了數(shù)控機(jī)床進(jìn)給系統(tǒng)設(shè)計(jì)技術(shù)相關(guān)研究現(xiàn)狀,針對(duì)雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)分析了已有研究的優(yōu)點(diǎn)和不足,闡明了本文的研究目的及意義,給出了本文的研究?jī)?nèi)容及組織架構(gòu)。第二章闡述了雙絲杠驅(qū)動(dòng)原理,在總結(jié)雙絲杠驅(qū)動(dòng)的優(yōu)缺點(diǎn)和相對(duì)單絲杠驅(qū)動(dòng)的設(shè)計(jì)區(qū)別的基礎(chǔ)上,提出了雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)的設(shè)計(jì)技術(shù)。第三章從誤差源中區(qū)分出間隙誤差,提出了間隙誤差空間的概念并研究了間隙誤差空間的圖解和數(shù)學(xué)表達(dá),分析了間隙誤差及多重冗余約束對(duì)機(jī)構(gòu)誤差的影響,即冗余約束可以減小間隙誤差空間從而提高機(jī)構(gòu)精度。構(gòu)建了考慮多重冗余約束、主要零部件和主要誤差源的雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)位置誤差模型及角度誤差模型。第四章考慮移動(dòng)部件長(zhǎng)度、負(fù)載位置動(dòng)態(tài)變化,對(duì)雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)進(jìn)行了大量絲杠導(dǎo)軌跨距組合算例分析,優(yōu)化目標(biāo)包括傳遞誤差、靜力學(xué)變形和固有頻率,得到了單項(xiàng)目標(biāo)的變化趨勢(shì)、最優(yōu)跨距組合區(qū)間和區(qū)間系數(shù)。在最優(yōu)區(qū)間內(nèi),通過(guò)kriging方法和NSGA-Ⅱ算法求得多目標(biāo)最優(yōu)的絲杠導(dǎo)軌跨距組合。第五章闡述了數(shù)控機(jī)床雙絲杠驅(qū)動(dòng)進(jìn)給系統(tǒng)設(shè)計(jì)與優(yōu)化工具集的體系結(jié)構(gòu),介紹了該工具集的功能模塊,并通過(guò)VTM200/F5車銑復(fù)合加工中心Z向進(jìn)給系統(tǒng)設(shè)計(jì)對(duì)工具集進(jìn)行了應(yīng)用驗(yàn)證。第六章總結(jié)了全文的研究成果并對(duì)今后的研究工作進(jìn)行了展望。
[Abstract]:NC machine tools are developing towards high speed, high precision and high stability. For large moving parts, the traditional single screw drive is difficult to drive the center of gravity, and is prone to vibration at high speed feed. So the double-screw drive feed system has been applied more and more in recent years. Double screw drive feed system has a set of feed parts, which makes its design and modeling analysis more complicated. In this paper, the design and optimization of double screw drive feed system for NC machine tools are studied. On the basis of summarizing the advantages and disadvantages of double lead screw drive and the design difference of single screw drive, the design method of double lead screw drive feed system is put forward. The position error model and angle error model of double screw drive feed system considering multiple redundancy constraints, main parts and main error sources are constructed. Considering such factors as the length of moving parts and the position of spindle box, the combination of lead screw and rail span is optimized, and the optimum interval coefficient of span combination and the optimal combination of span for multiple targets are obtained. The design and optimization tool set of double screw drive feed system for NC machine tools are developed. The first chapter summarizes the related research status of feed system design of NC machine tools, analyzes the advantages and disadvantages of the existing research, and expounds the purpose and significance of this paper. The research content and organization structure of this paper are given. In the second chapter, the principle of double lead screw drive is described. On the basis of summarizing the advantages and disadvantages of double lead screw drive and the design difference of single screw drive, the design technology of double lead screw drive feed system is put forward. In chapter 3, the gap error is distinguished from the error source, and the concept of gap error space is proposed, and the graphic and mathematical expression of clearance error space is studied. The influence of clearance error and multiple redundancy constraints on the mechanism error is analyzed. That is, redundant constraints can reduce the clearance error space and improve the accuracy of the mechanism. The position error model and angle error model of double screw drive feed system considering multiple redundancy constraints, main parts and main error sources are constructed. In chapter 4, considering the length of moving parts and the dynamic change of load position, a large number of examples are analyzed for the double screw drive feed system. The optimization targets include transmission error, static deformation and natural frequency. The variation trend of single target, optimal span combination interval and interval coefficient are obtained. In the optimal interval, the kriging method and NSGA- 鈪,
本文編號(hào):1892159
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1892159.html
最近更新
教材專著