帶鋼卷取溫度高精度預報及多目標優(yōu)化控制策略研究
本文選題:層流冷卻 切入點:遺傳算法 出處:《北京科技大學》2016年博士論文
【摘要】:在現(xiàn)代鋼鐵工業(yè)中,層流冷卻工藝是通過軋后強制水冷來改善帶鋼的組織性能,提高帶鋼質(zhì)量和產(chǎn)量的過程。帶鋼在層流冷卻過程中發(fā)生復雜的水冷、空冷換熱及內(nèi)部的熱傳導過程,具有工況條件變化劇烈、強非線性、參數(shù)時變、數(shù)學模型難以精確描述的復雜工業(yè)特性,而且整個冷卻區(qū)的惡劣環(huán)境不能逐點安裝溫度檢測儀表,帶鋼溫度難以連續(xù)檢測,現(xiàn)有的控制方法存在不能適應變化頻繁的工況條件、過于依賴帶鋼溫度模型精度的問題,導致卷取溫度控制精度不高、對給定冷卻速率跟蹤效果差。本文以某鋼鐵公司帶鋼熱連軋生產(chǎn)線的層流冷卻過程為研究對象,以提高帶鋼成品質(zhì)量為目標,從溫度預報模型優(yōu)化和多目標優(yōu)化控制策略研究兩方面入手,將先進控制理論和改進的優(yōu)化算法引入到生產(chǎn)實際中,提出了基于再進化遺傳算法的相關性剪枝法(Re-evolutionary Genetic Algorithm-Correlation Pruning Algorithm,REGA-CPA)優(yōu)化的BP神經(jīng)網(wǎng)絡卷取溫度預報模型和基于轉(zhuǎn)基因多目標遺傳算法(Transgenic Multi Objective Genetic Algorithm, TMOGA)的層流冷卻優(yōu)化控制策略,并利用層流冷卻過程實際生產(chǎn)數(shù)據(jù)進行了仿真實驗研究,仿真結(jié)果驗證了所提出溫度預報模型的高精度和多目標優(yōu)化控制策略的有效性。本文研究工作具體表現(xiàn)在以下幾個方面:1)再進化遺傳算法(REGA)現(xiàn)有諸多改進遺傳算法(Genetic Algorithm,GA)終究只是在種群的正常進化過程中所采取各種策略,在設計理念上明顯受到自然界生物自然進化思想的束縛,對由于種群進化過程中的盲目性、隨機性而引起的退化現(xiàn)象明顯應對措施不足,對克服GA收斂速度慢和易陷于局部最優(yōu)等缺點的效果終究有限;诖,本文在進化策略上另辟蹊徑,提出了一種基于重新進化思想的REGA。其中,首次提出了重新進化的思想,用“返祖”操作找回丟失的較優(yōu)模式并將其耦合至下一代種群中,極大的提高了算法的收斂速度;分析了“種群解的空間跨度”和“基因段距離”對種群多樣性的影響,用“優(yōu)生”操作來推動算法從平面到多維空間的立體式搜索,以勘探和挖掘出更廣、更優(yōu)的尋優(yōu)區(qū)間,并在種群進化后期,強力驅(qū)動算法收斂于全局最優(yōu).2)基于REGA-CPA優(yōu)化的BP神經(jīng)網(wǎng)絡卷取溫度預報模型本文提出了一種基于REGA-CPA優(yōu)化的BP神經(jīng)網(wǎng)絡卷取溫度預報模型,“階段性跨度淘汰法”主要是從保持種群多樣性方面考慮,隨時考量整個種群在平面空間的分布均勻性,以拓展搜索空間,使算法能夠在更廣、更優(yōu)的區(qū)域?qū)?yōu);“DNA鑒定法”從多維空間來考量種群在全局空間的尋優(yōu)遍歷性,為判斷任意兩個個體在多維空間的距離提供了直觀、高效的方法。仿真結(jié)果表明:該卷取溫度預報模型的收斂速度快、精度高,滿足實時在線的控制要求,預報精度在±10℃范圍之內(nèi),3)“隨機動態(tài)輸入模式”卷取溫度預報模型的在線應用在離線方式下訓練好的基于REGA-CPA優(yōu)化的BP神經(jīng)網(wǎng)絡卷取溫度預報模型為主模型,即可應用于在線的卷取溫度預報。鑒于層流冷卻系統(tǒng)是一個強耦合、強非線性、大滯后且滯后的時間時變的系統(tǒng),因主模型權(quán)值、閾值、結(jié)構(gòu)已固定,在線預報卷取溫度時,若干點的精度有時可能會低于離線時訓練的精度。針對此問題,提出了“隨機動態(tài)輸入模式”卷取溫度預報模型,以最大限度的保證在線溫度預報模型的預報精度在±10℃范圍以內(nèi),能為層流冷卻的預設定及前饋控制提供可靠的參考數(shù)據(jù),從而為進一步提高卷取溫度的控制精度提供了新的途徑。4)轉(zhuǎn)基因多目標遺傳算法(TMOGA)提出了TMOGA,利用歷代種群Pareto前沿面的交集來提取較優(yōu)模式并建立基因庫,庫中的優(yōu)秀基因通過“轉(zhuǎn)基因”的方式移植到下一代種群,以保證種群進化穩(wěn)步向Pareto最優(yōu)解集迫近;基于決策變量的擁擠距離策略和基因庫的競爭機制,保持了種群的多樣性,使算法可以挖掘和勘探出更廣、更優(yōu)的搜索空間;隨機抽取基因的模式保證了歷代種群Pareto前沿面均具有良好的空間分布均勻性;基因庫的記憶、固化功能形成強力驅(qū)動機制,使算法接近收斂時迅速跳出局部前沿,快速逼近真實的Pareto最優(yōu)解集。5)基于TMOGA的層流冷卻系統(tǒng)粗調(diào)區(qū)優(yōu)化控制策略針對如何提高帶鋼卷取溫度的控制精度和如何準確跟蹤給定冷卻速率的問題,提出了基于TMOGA的層流冷卻系統(tǒng)粗調(diào)區(qū)優(yōu)化控制策略,用于搜索粗調(diào)區(qū)集管的最佳開閉模式集合(Pareto最優(yōu)解集);仿真結(jié)果表明,該多目標優(yōu)化控制策略可獲取全局Pareto最優(yōu)解集且在空間分布均勻,所提供的決策變量豐富、合理,因此控制系統(tǒng)的控制范圍廣、精度高,對多目標的均衡能力強,從而為新鋼種的開發(fā)、冷卻工藝優(yōu)化提供了強有力的技術手段,同時為發(fā)展高端、高附加值的帶鋼產(chǎn)品打下了堅實的基礎。
[Abstract]:In modern iron and steel industry, the laminar cooling process is through forced water cooling after rolling to improve the microstructure and properties of steel strip, improve the quality and yield of strip. The occurrence of complex water in the laminar cooling process, air heat transfer and internal heat conduction process, with dramatic changes in working conditions, strong nonlinear, parameter time varying, complex industrial characteristic mathematical model difficult to describe precisely, and the cooling zone of the harsh environment can not point installed temperature measuring instrument, the strip temperature control method to continuous detection, the existing can not adapt to the frequent changes in working conditions, the accuracy of the model is too dependent on the strip temperature problem, cause the volume is not high accuracy temperature control for a given cooling rate, tracking effect is poor. Based on the laminar cooling process of hot strip rolling production line of a Steel Corp as the research object, in order to improve the product quality for the purpose of a strip The subject, starting from the optimal temperature prediction model and multi-objective optimization control strategy based on two aspects, the optimization and improvement of the advanced control theory into the actual production, this paper presents a correlation pruning method evolved based on genetic algorithm (Re-evolutionary Genetic Algorithm-Correlation Pruning Algorithm, REGA-CPA) BP neural network optimization model and prediction of coiling temperature transgenic based on multi-objective genetic algorithm (Transgenic Multi Objective Genetic Algorithm, TMOGA) of the laminar cooling control strategy optimization, and using the laminar cooling process of actual production data are simulated. The simulation results verify that the proposed temperature prediction model with high precision and multi objective optimization of the effectiveness of the control strategy. The specific performance of this research work in the following aspects: 1) and genetic algorithm (REGA) to the much improved genetic algorithm (Ge Netic Algorithm, GA) are only in the normal population evolution process in the various strategies in the design concept was constrained by natural biological evolution thought, due to the blindness of the evolutionary process, the randomness caused by the degradation of inadequate measures, is limited to overcome the slow convergence speed of GA and easy to fall into local optimum effect. Based on this, this article on the evolution strategy and put forward a kind of the re evolution based on REGA. is proposed for the first time to the evolution of thought "is a good method to retrieve the lost progenitor return operation which is coupled to the next generation, great to improve the convergence speed of the algorithm; analyze the impact of" space "population solution and gene segment distance on population diversity, with" eugenics "operation to promote the algorithm from the plane to The three-dimensional space to search, exploration and mining more widely, better searching interval, and the population in the late stage of evolution, strong drive algorithm converges to the global optimal.2) BP optimization REGA-CPA neural network prediction of coiling temperature model this paper proposes a BP REGA-CPA neural network optimization based on coiling temperature based on the prediction model, the stage span elimination method "is mainly considered from the diversity of the population, the population distribution of any consideration in the plane space uniformity, to expand the search space, the algorithm can in a wider area, seeking better;" DNA identification method "from the multidimensional space to consider in population the global space searching ergodicity, for the judgment of any two individual distance in the multidimensional space provide an intuitive and efficient method. The simulation results show that the coiling temperature prediction model has fast convergence speed and high precision, real-time Online control requirements, forecast accuracy within the range of - 10 DEG C, 3) "random dynamic input mode volume online temperature prediction model for application in offline BP optimization REGA-CPA neural network prediction of coiling temperature model based on the model of training, can be applied to the online prediction of coiling temperature in laminar flow. The cooling system is a strong coupling, nonlinear, large delay systems and the lag time variable, because the main model weights, threshold, fixed structure, on-line prediction of coiling temperature, some accuracy may sometimes be below the line from the training precision. Aiming at this problem, put forward the" random dynamic the input mode of coiling temperature prediction model, in order to guarantee the maximum online prediction model for temperature prediction accuracy within the range of - 10 DEG C, can provide reliable reference data for pre setting and feedforward control in laminar cooling, In order to further improve provides a new way for.4 the control accuracy of the coiling temperature) transgenic multi-objective genetic algorithm (TMOGA) proposed by TMOGA, the population Pareto frontier intersection to extract the optimum model and the establishment of gene pool, good genes in the library through the "transgenic" way to transplant to the next generation the population, in order to ensure the evolution of population steadily approaching to the Pareto optimal solution set; decision variable crowding distance strategy and competition mechanism based on gene library, keep population diversity, the algorithm can mining and exploration of a broader, better search space; random gene model to ensure the population were Pareto frontier has a good spatial distribution uniformity; gene library memory, curing function to form a strong driving mechanism, the algorithm is close to convergence quickly jump out of the local frontier, fast approaching the true Pareto optimal solutions. Set.5 TMOGA) coarse area optimization control strategy on how to improve the accuracy of the coiling temperature and how to accurately track the given cooling rate of laminar cooling system based on the proposed coarse region optimization control strategy of laminar cooling system based on TMOGA, search for the coarse set tube opening and closing mode set (the best the Pareto optimal solution set); the simulation results show that the control strategy can obtain the global optimal solution set of Pareto and the spatial distribution of the uniform multi-objective optimization, the decision variables supplied by the rich, reasonable, so the control system wide control range, high precision, strong ability to balance multiple objectives, so as to develop new steel grades. It provides powerful techniques for optimization of cooling process at the same time, the development of high-end, high value-added steel products to lay a solid foundation.
【學位授予單位】:北京科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG334.9;TP18
【相似文獻】
相關期刊論文 前10條
1 陳凌峰,黃望芽;熱軋卷取溫度對無取向電工鋼性能的影響[J];寶鋼技術;2004年01期
2 張玉妥;賈丹;王承志;;熱軋低碳鋼不同卷取溫度下的相變模擬[J];沈陽理工大學學報;2008年06期
3 張樹存;帶鋼卷取溫度高精度預報模型的研究與開發(fā)[J];燕山大學學報;2002年03期
4 楊澄;卷取溫度控制模型的優(yōu)化[J];武漢工程職業(yè)技術學院學報;2004年04期
5 王益群;王海芳;孫旭光;張偉;;基于神經(jīng)網(wǎng)絡的熱軋卷取溫度模型辨識[J];中國機械工程;2006年01期
6 肖根福;劉歡;;基于模糊聚類的粒子群神經(jīng)網(wǎng)絡預測卷取溫度[J];井岡山學院學報;2009年04期
7 齊亮;申幫坡;胡義鋒;羅敏;;卷取溫度對含釩管線鋼組織和性能的影響研究[J];熱加工工藝;2012年10期
8 趙小婷;宋國斌;李紅斌;;卷取溫度對低合金耐磨鋼軋態(tài)組織演變的影響[J];熱加工工藝;2012年22期
9 紀德清 ,朱榮林;熱帶連軋機軋后在線控制冷卻速度和卷取溫度對低碳-錳-鈮鋼力學性能和組織的影響[J];鋼鐵研究總院學報;1985年02期
10 張富強;;成分和卷取溫度對熱軋鈮微合金鋼組織和性能的影響[J];上海金屬;2008年05期
相關會議論文 前10條
1 高志玲;;2050熱軋卷取溫度精度控制輔助方法解析[A];中國金屬學會2003中國鋼鐵年會論文集(2)[C];2003年
2 王東升;;寶鋼熱軋卷取溫度質(zhì)量的保證機制[A];中國金屬學會2003中國鋼鐵年會論文集(4)[C];2003年
3 張賀詠;;1580熱軋卷取溫度U型冷卻控制中出現(xiàn)的新問題淺析[A];2006年全國軋鋼生產(chǎn)技術會議文集[C];2006年
4 張春草;;熱連軋卷取溫度優(yōu)化措施研究[A];中國計量協(xié)會冶金分會2010年會論文集[C];2010年
5 程杰鋒;劉正東;唐廣波;;寶鋼2050熱連軋生產(chǎn)線卷取溫度預測模擬研究[A];2009熱軋鋼材組織性能預報研究與應用學術研討會文集[C];2009年
6 彭良貴;張殿華;宋向榮;李江;張德志;陳珂;;寧波鋼鐵1780熱連軋過程計算機卷取溫度控制數(shù)學模型[A];全國冶金自動化信息網(wǎng)2011年年會論文集[C];2011年
7 冉瑞生;;熱軋帶鋼卷取溫度控制模型的自學習[A];全國冶金自動化信息網(wǎng)2009年會論文集[C];2009年
8 李宏;張大志;;基于遺傳神經(jīng)網(wǎng)絡的熱連軋帶鋼卷取溫度預報[A];第十一屆全國自動化應用技術學術交流會論文集[C];2006年
9 霍亮琴;于浩;;卷取溫度對薄板坯連鑄連軋含硼低碳鋼板性能的影響[A];第七屆全國材料科學與圖像科技學術會議論文集[C];2009年
10 孫旭鴻;;卷取溫度控制模型(CTC)初探[A];工業(yè)自動化應用實踐——全國(第五屆)煉鋼、連鑄和軋鋼自動化學術會議論文集[C];2002年
相關重要報紙文章 前6條
1 肖歡;武鋼計控公司自主管理成果獲全國一等獎[N];中國冶金報;2008年
2 楊雄飛;熱軋Q&P薄板熱機械模擬[N];世界金屬導報;2013年
3 ;690~780MPa級熱軋薄板車輪鋼的材料設計[N];世界金屬導報;2007年
4 陳連貴 成小軍 康永林 李光輝 曾松盛;薄板坯連鑄連軋線生產(chǎn)DP鋼的研究[N];世界金屬導報;2009年
5 杜鋒;殘余元素含量提高對超薄鑄帶性能影響[N];世界金屬導報;2012年
6 高真鳳;俄羅斯貨車車廂用耐腐蝕高強無鎳鋼的開發(fā)[N];世界金屬導報;2011年
相關博士學位論文 前2條
1 孫鐵軍;帶鋼卷取溫度高精度預報及多目標優(yōu)化控制策略研究[D];北京科技大學;2016年
2 吳保才;建龍集團SO8Al冷軋鋼板的生產(chǎn)工藝優(yōu)化與Q235鋼的腐蝕行為研究[D];東北大學;2013年
相關碩士學位論文 前8條
1 石孝武;帶鋼卷取溫度精度預報的方法研究[D];中南大學;2008年
2 李旭東;基于超快速冷卻的熱軋帶鋼低溫卷取溫度控制及U型冷卻策略的研究與應用[D];東北大學;2012年
3 梁英;焊接氣瓶用HP295熱軋鋼帶的生產(chǎn)試驗研究[D];山東大學;2006年
4 章小峰;薄板坯連鑄連軋CSP工藝冷卻段組織模擬及產(chǎn)品性能預報[D];武漢科技大學;2004年
5 顏飛;Q345E熱軋帶鋼軋后冷卻過程溫度及組織演變模擬[D];武漢科技大學;2004年
6 張浩;納米級析出強化高強鋼的工藝研究[D];遼寧科技大學;2008年
7 尹大鵬;工藝參數(shù)對S08Al冷軋深沖用鋼組織、性能和織構(gòu)的影響[D];東北大學;2011年
8 楊娜;440MPa級高強度深沖鋼(IF)的研制[D];昆明理工大學;2009年
,本文編號:1721407
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1721407.html