銑削刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)研究
本文選題:銑削刀具 切入點(diǎn):刀具磨損 出處:《哈爾濱理工大學(xué)》2016年碩士論文
【摘要】:隨著工業(yè)智能化的提出,數(shù)控加工技術(shù)正朝著智能化的方向發(fā)展。刀具磨損狀態(tài)監(jiān)測(cè)技術(shù)在數(shù)控加工智能化發(fā)展中占據(jù)重要的地位,在加工過程中,精確及時(shí)地監(jiān)測(cè)到刀具磨損狀態(tài)并且更換失效的刀具,不僅有助于提高生產(chǎn)效率,還可以提高刀具的使用壽命。因此,刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)是現(xiàn)代數(shù)控加工智能化發(fā)展迫切需要的,其關(guān)鍵技術(shù)的研究具有十分重要的意義。本文針對(duì)刀具磨損的形成機(jī)理進(jìn)行了詳盡的分析,根據(jù)分析制定刀具磨鈍標(biāo)準(zhǔn),考慮不同磨損狀態(tài)下對(duì)監(jiān)測(cè)信號(hào)的影響,合理選擇監(jiān)測(cè)方法,建立銑刀磨損狀態(tài)監(jiān)測(cè)系統(tǒng)的信號(hào)采集平臺(tái),制定信號(hào)采集方案并且采集信號(hào)數(shù)據(jù)。針對(duì)上述所采集的數(shù)據(jù)進(jìn)行特征提取,建立特征向量與銑削刀具磨損的之間的關(guān)系,針對(duì)特征向量維數(shù)高的特點(diǎn),提出了改進(jìn)的多分類支持向量機(jī)遞歸特征消去的特征選擇方法,運(yùn)用測(cè)試樣本進(jìn)行驗(yàn)證,該方法優(yōu)于其他特征選擇方法,為后續(xù)的狀態(tài)識(shí)別,提供維數(shù)低和對(duì)不同銑刀磨損狀態(tài)比較敏感的特征向量。采用萬有引力優(yōu)化最小二乘支持向量機(jī)的銑刀磨損狀態(tài)識(shí)別的方法,利用選擇后的特征向量進(jìn)行銑刀磨損狀態(tài)的識(shí)別。通過對(duì)比,該方法的識(shí)別精度較高。本文最后結(jié)合VC++軟件和Matlab軟件的優(yōu)點(diǎn),開發(fā)銑削刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng),可以實(shí)現(xiàn)銑削加工中刀具磨損狀態(tài)的快速識(shí)別,通過識(shí)別結(jié)果顯示界面,用戶可以直觀地判斷刀具磨損的狀況,進(jìn)而判斷是否更換刀具,減少停機(jī)時(shí)間,提高了加工效率。通過對(duì)銑削刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)的研究,提高了刀具的利用率,避免了報(bào)廢工件的產(chǎn)生,降低了生產(chǎn)過程中資源的大量浪費(fèi),提高了生產(chǎn)效率。為數(shù)控加工智能化的發(fā)展奠定了基礎(chǔ)。
[Abstract]:With the advance of industrial intelligence, NC machining technology is developing towards the direction of intelligentization.Tool wear monitoring technology plays an important role in the intelligent development of NC machining. In the process of machining, it is not only helpful to improve the production efficiency, but also to monitor the tool wear state accurately and timely and to replace the invalid tool in the process of machining.It can also improve the service life of cutting tools.Therefore, tool wear monitoring system is an urgent need for the intelligent development of modern NC machining, and the research of its key technology is of great significance.In this paper, the formation mechanism of tool wear is analyzed in detail. According to the analysis, the tool wear bluntness standard is formulated, the influence of different wear states on monitoring signal is considered, and the monitoring method is reasonably selected.The signal acquisition platform of milling cutter wear monitoring system is established, and the signal acquisition scheme and signal data collection are made.Based on the above data, the relationship between feature vector and milling tool wear is established, and the feature vector dimension is high.An improved feature selection method based on recurrent feature elimination of multi-classification support vector machines is proposed, which is verified by test samples. This method is superior to other feature selection methods and is used for subsequent state recognition.Provides feature vectors with low dimension and sensitivity to different milling cutter wear states.The wear state of milling cutter is identified by using the universal gravity optimization least squares support vector machine (LS-SVM) and the selected eigenvector.By comparison, the recognition accuracy of this method is high.Finally, combining the advantages of VC software and Matlab software, a tool wear monitoring system is developed, which can realize the rapid recognition of tool wear state in milling machining, and display the interface through the recognition results.The user can directly judge the condition of tool wear, and then judge whether to change the tool, reduce the downtime and improve the machining efficiency.Through the research on the key technology of the monitoring system of milling tool wear status, the utilization rate of the tool is improved, the production of scrapped workpiece is avoided, the waste of resources in the production process is reduced, and the production efficiency is improved.It lays a foundation for the development of intelligent NC machining.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG54;TG714
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋志國(guó);宋艷;;高速銑削刀具及切削參數(shù)的選擇[J];組合機(jī)床與自動(dòng)化加工技術(shù);2009年01期
2 戴蕾;;銑削刀具的合理應(yīng)用[J];中國(guó)高新技術(shù)企業(yè);2013年19期
3 徐創(chuàng)文;陳花玲;劉彥國(guó);高瑞春;;銑削刀具不同磨損期振動(dòng)信號(hào)的分維特征[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2007年06期
4 劉美玲;徐小兵;;高速銑削刀具懸伸量的優(yōu)化方案探討[J];湖北農(nóng)機(jī)化;2008年02期
5 勵(lì)軍;;淺談數(shù)控銑削刀具的選擇[J];職業(yè);2010年17期
6 李選琦;范薇;楊剛;趙鴻;;鈦合金材料的銑削刀具磨損試驗(yàn)研究[J];機(jī)械工程師;2008年05期
7 林琴琴;李紅;李寒毅;王瑋;;鈦合金零件帶孔面銑削刀具的優(yōu)化[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
8 余建萍;;加工箱體用銑削刀具的探索[J];杭氧科技;1997年01期
9 欽蘭云;王維;楊光;么健石;;異型螺桿銑削刀具監(jiān)控儀的研究[J];沈陽航空工業(yè)學(xué)院學(xué)報(bào);2006年05期
10 徐創(chuàng)文;陳花玲;程仲文;李寶棟;;基于時(shí)序分析與模糊聚類的銑削刀具磨損狀態(tài)識(shí)別[J];機(jī)械強(qiáng)度;2007年04期
相關(guān)碩士學(xué)位論文 前6條
1 王盛璋;航空鈦合金復(fù)雜結(jié)構(gòu)件銑削刀具性能綜合評(píng)判技術(shù)研究[D];南京航空航天大學(xué);2015年
2 嚴(yán)浩;微細(xì)銑削刀具磨損的聲發(fā)射特征研究[D];南京航空航天大學(xué);2016年
3 張世光;銑削刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱理工大學(xué);2016年
4 胡娜;基于加工特征的數(shù)控銑削刀具選配系統(tǒng)研究[D];哈爾濱理工大學(xué);2012年
5 徐玉平;銑削刀具管理信息系統(tǒng)的設(shè)計(jì)與研究[D];華南理工大學(xué);2012年
6 鄧昭帥;銅陽極板銑削刀具磨損原因分析及刀具耐用度的確定[D];昆明理工大學(xué);2010年
,本文編號(hào):1705439
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1705439.html