一種新型實(shí)體殼單元及其板料沖壓全工序仿真算法
本文關(guān)鍵詞: 實(shí)體殼單元 自適應(yīng)網(wǎng)格加密 板料沖壓全工序仿真 閉鎖現(xiàn)象 穩(wěn)定化 出處:《華中科技大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:近年來(lái),有限單元法已經(jīng)成為一種重要的數(shù)值模擬手段,基于有限單元法的數(shù)值模擬軟件已經(jīng)在板料沖壓領(lǐng)域得到了廣泛應(yīng)用。現(xiàn)有的商業(yè)有限元數(shù)值模擬軟件主要采用薄膜單元和殼單元進(jìn)行板料沖壓過(guò)程模擬。但是,對(duì)于以汽車結(jié)構(gòu)件為代表的厚板件,薄膜單元和殼單元并不能準(zhǔn)確模擬板料變形。這是因?yàn)楸∧卧蜌卧己雎粤搜匕辶虾穸确较虻恼龖?yīng)力,且無(wú)法體現(xiàn)板料的雙面接觸效果。為了彌補(bǔ)薄膜單元和殼單元存在的不足,本文提出了一種新的實(shí)體殼單元模型,建立了基于該單元的動(dòng)力顯式算法,并成功開(kāi)發(fā)出了一套實(shí)體殼單元板料沖壓全工序仿真算法。該算法既能有效反映成形過(guò)程中模具對(duì)板料的擠壓效果,又能準(zhǔn)確描述沿板料厚度方向的應(yīng)力分布,顯著改善了現(xiàn)有板料沖壓有限元數(shù)值模擬軟件在非平面應(yīng)力成形問(wèn)題中表現(xiàn)失真的問(wèn)題,大大提高了板料沖壓成形仿真和回彈預(yù)測(cè)的準(zhǔn)確性。本文提出了一種無(wú)閉鎖現(xiàn)象和沙漏模式的新型實(shí)體殼單元。通過(guò)引入1個(gè)EAS(Enhanced Assumed Strain,改善擬應(yīng)變)內(nèi)部變量,消除了單元的體積閉鎖和厚向閉鎖。采用ANS (Assumed Nature Strain,假設(shè)自然應(yīng)變)四點(diǎn)插值方法,克服了單元的梯形閉鎖和橫向剪切閉鎖。為了有效抑制面內(nèi)單點(diǎn)積分引起的沙漏模式,提出了對(duì)應(yīng)變轉(zhuǎn)換矩陣和協(xié)變應(yīng)變-位移矩陣Taylor展開(kāi),并對(duì)二者乘積進(jìn)行投影和重構(gòu)的方法,構(gòu)建了不產(chǎn)生過(guò)剛現(xiàn)象的物理穩(wěn)定化方法。采用若干經(jīng)典線性算例驗(yàn)證了該實(shí)體殼單元的計(jì)算精度和收斂速度。建立了動(dòng)力顯式求解格式的實(shí)體殼單元成形仿真算法,解決了板料拉深、彎曲、翻邊整形等大變形動(dòng)態(tài)接觸問(wèn)題仿真中的收斂性難題。提出了內(nèi)部變量的顯式凝聚方法,有效減少了數(shù)據(jù)存儲(chǔ)量。為了提高成形仿真的計(jì)算效率,提出了實(shí)體殼單元的自適應(yīng)網(wǎng)格加密技術(shù),并采用沙漏應(yīng)力的繼承保證了單元的穩(wěn)定性。推導(dǎo)了服從Yld91和Y1d2004-18p屈服準(zhǔn)則的彈塑性本構(gòu)模型,為準(zhǔn)確描述各向異性板材的變形行為提供了前提條件;诮⒌膶(shí)體殼單元模型,開(kāi)發(fā)了一套完整的板料沖壓全工序仿真算法,并將該算法成功地應(yīng)用于汽車鋁合金結(jié)構(gòu)件等厚板零件的成形、切邊沖孔及回彈模擬。為了提高沖裁邊界的尺寸精度,切邊沖孔算法采用了網(wǎng)格加密的方法,并通過(guò)向前推進(jìn)網(wǎng)格調(diào)整法和網(wǎng)格優(yōu)化等措施,避免了畸形單元的產(chǎn)生。基于無(wú)模具的靜力隱式回彈仿真算法,推導(dǎo)了隱式格式的單元穩(wěn)定化方法,消除了剛度矩陣的秩缺陷,保證了回彈預(yù)測(cè)的準(zhǔn)確性。多個(gè)算例表明,開(kāi)發(fā)的實(shí)體殼單元板料沖壓全工序仿真算法能獲得較高的計(jì)算精度,基本達(dá)到了實(shí)用化水平。
[Abstract]:In recent years, the finite element method has become an important means of numerical simulation. The numerical simulation software based on finite element method has been widely used in the field of sheet metal stamping. The commercial finite element numerical simulation software mainly uses thin film element and shell element to simulate sheet metal stamping process. The film element and the shell element can not accurately simulate the deformation of the sheet metal for the thick plate represented by the automobile structure. This is because both the film element and the shell element ignore the normal stress along the direction of the thickness of the sheet metal. In order to make up for the shortage of thin film element and shell element, a new solid shell element model is proposed, and a dynamic explicit algorithm based on this element is established. A set of simulation algorithm for the whole process of solid shell unit sheet stamping is developed, which can not only effectively reflect the extrusion effect of the die on the sheet metal in the forming process, but also accurately describe the stress distribution along the direction of the thickness of the sheet metal. The problem that the finite element numerical simulation software of sheet metal stamping in the non-plane stress forming problem is obviously improved is improved. The accuracy of sheet metal stamping simulation and springback prediction is greatly improved. In this paper, a new type of solid shell element without locking phenomenon and hourglass mode is proposed. By introducing a EAS(Enhanced Assumed training, the internal variable is improved. The volume and thick latchup of the element are eliminated. The trapezoidal locking and transverse shear latchup are overcome by using ANS sumed Nature training (assuming natural strain) four-point interpolation method. In order to effectively suppress the hourglass mode caused by in-plane single point integration, the trapezoidal latchup and transverse shear latchup of the element are overcome. The Taylor expansion of strain transformation matrix and covariant strain-displacement matrix is proposed, and the method of projecting and reconstructing the product of the two matrices is presented. In this paper, a physical stabilization method without overstiffness is constructed, and some classical linear examples are used to verify the accuracy and convergence speed of the solid shell element. A dynamic explicit solution scheme is established to simulate the forming of the solid shell element. The convergence problem in the simulation of large deformation dynamic contact problems such as drawing, bending and flanging of sheet metal is solved. The explicit condensation method of internal variables is proposed, which effectively reduces the data storage. In order to improve the computational efficiency of forming simulation, An adaptive mesh encryption technique for solid shell elements is proposed, and the stability of the element is guaranteed by inheriting the hourglass stress. An elastoplastic constitutive model is derived, which is based on the yield criteria of Yld91 and Y1d2004-18p. In order to accurately describe the deformation behavior of anisotropic sheet metal, a complete simulation algorithm for sheet metal stamping process is developed based on the established solid shell element model. The algorithm is successfully applied to the forming, edge-punching and springback simulation of automotive aluminum alloy parts with equal thickness plate. In order to improve the dimension accuracy of blanking boundary, the edge-cutting punching algorithm adopts the method of mesh encryption. By advancing forward mesh adjustment method and mesh optimization, the generation of deformable element is avoided. Based on the static implicit springback simulation algorithm without mould, the element stabilization method of implicit scheme is derived, which eliminates the rank defect of stiffness matrix. The accuracy of springback prediction is ensured. Several examples show that the developed simulation algorithm for the whole stamping process of solid shell plate can obtain high calculation accuracy and reach the practical level.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG386;TP391.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 倪洪啟,劉相華,王國(guó)棟;板料沖壓過(guò)程的數(shù)值模擬[J];鍛壓裝備與制造技術(shù);2004年04期
2 張峰;;對(duì)板料沖壓工藝的設(shè)計(jì)研究[J];科技資訊;2006年29期
3 李宇;于盛睿;王文超;羅云龍;李成;;基于板料沖壓的有限元數(shù)值模擬[J];熱加工工藝;2008年23期
4 肖煜中;陳軍;;金屬板料沖壓數(shù)值模擬中的宏觀硬化模型研究現(xiàn)狀[J];塑性工程學(xué)報(bào);2009年04期
5 趙多興;;板料沖壓中的磨瘤成因及控制措施[J];農(nóng)機(jī)使用與維修;2009年05期
6 葛世昌;;用板料沖壓制造調(diào)速滑動(dòng)盤[J];鍛壓技術(shù);1980年01期
7 В、А、ЖАРКОВ ,李良福;板料沖壓生產(chǎn)中節(jié)約金屬的前景[J];模具工業(yè);1993年04期
8 龍?jiān)?王元?jiǎng)?安群力;陳建橋;李榮峰;祝洪川;;板料沖壓過(guò)程的數(shù)值仿真與參數(shù)優(yōu)化[J];金屬成形工藝;2004年03期
9 李宇;于盛睿;王文超;羅云龍;李成;;基于板料沖壓的有限元數(shù)值模擬[J];高校實(shí)驗(yàn)室工作研究;2008年04期
10 王嘯宇;;板料沖壓加工的合理化[J];鍛壓機(jī)械;1978年02期
相關(guān)會(huì)議論文 前4條
1 吳雷;謝偉;孟祥新;;軋制方向?qū)Ω飨虍愋园辶蠜_壓成型性能的影響[A];2012安徽省汽車工程學(xué)會(huì)年會(huì)論文集[C];2012年
2 樊延良;劉敬平;王斌修;;基于RP技術(shù)的快速模具在板料沖壓中的應(yīng)用[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
3 樊延良;劉敬平;王斌修;;基于RP技術(shù)的快速模具在板料沖壓中的應(yīng)用[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)第11屆全國(guó)特種加工學(xué)術(shù)會(huì)議專輯[C];2005年
4 樊延良;劉敬平;王斌修;;基于RP技術(shù)的快速模具在板料沖壓中的應(yīng)用[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集第11屆全國(guó)特種加工學(xué)術(shù)會(huì)議專輯[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 李巧敏;一種新型實(shí)體殼單元及其板料沖壓全工序仿真算法[D];華中科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前5條
1 候桂葉;基于DEFORM的沖壓模具設(shè)計(jì)的仿真與分析[D];電子科技大學(xué);2015年
2 林策;板形缺陷對(duì)板料沖壓回彈的影響規(guī)律研究[D];燕山大學(xué);2012年
3 許健健;不銹鋼板料沖壓線的自動(dòng)化改造[D];華中科技大學(xué);2012年
4 楊杰文;薄板雙向受壓失穩(wěn)的研究[D];湖南大學(xué);2012年
5 賴欣武;基于神經(jīng)網(wǎng)絡(luò)組合預(yù)測(cè)的板料沖壓回彈預(yù)測(cè)研究[D];浙江大學(xué);2006年
,本文編號(hào):1511556
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1511556.html