管電極電解加工深小孔技術研究
發(fā)布時間:2017-12-31 03:25
本文關鍵詞:管電極電解加工深小孔技術研究 出處:《大連理工大學》2016年碩士論文 論文類型:學位論文
【摘要】:深小孔在航天、武器、機械、醫(yī)療及儀器等領域應用廣泛。目前深小孔一般采用機械鉆削、激光、電火花等方法加工,但傳統(tǒng)的機械加工存在熱變形、難以加工高強度及高硬度材料等問題,而激光加工和電火花加工則會生成重鑄層和微裂紋等缺陷。管電極電解加工技術無冷作硬化層、電極損耗、熱再鑄層、孔口沒有毛刺和飛邊,且其加工范圍不受材料強度、硬度、韌性、熔點、導熱性等的限制。因此,采用管電極電解加工技術加工深小孔具有重要研究價值。本文設計并搭建了管電極電解加工深小孔加工裝置:試驗裝置選擇工件固定、電極進給的加工方案,利用雙滾輪的擠壓作為進給方式;進給裝置采用基于PLC的驅動控制,通過編程實現(xiàn)不同進給速度控制;采用正流式的電解液流動方式并設計了電極夾具;為提高加工精度,選用矩形波脈沖電源作為加工電源;在深小孔出口處設計了防泄保壓結構,以避免短路現(xiàn)象,提高加工穩(wěn)定性;利用基于FA-8樹脂的有機涂層工藝來實現(xiàn)側壁絕緣,能有效改善深小孔的錐度問題。利用COMSOL Multiphysics軟件對加工間隙進行流場仿真,通過不同仿真參數(shù)的設置和仿真結果,分析進口壓力與加工穩(wěn)定性之間的關系。試驗表明,電解液進口壓力過小或過大均易導致加工穩(wěn)定性變差,最終確定電解液的進口壓力為0.4MPa。開展管電極電解加工深小孔試驗,研究了電流、脈沖頻率、占空比和進給速度對孔加工質量的影響規(guī)律,并分析了各加工參數(shù)對孔表面粗糙度、徑向過切量和錐度的影響程度。結果表明,在進給速度為0.66 mm/min、電流為1.5 A、脈沖頻率為10 kHz,占空比為0.5時,加工效果較好。加工出了平均直徑為1.962 mm、深為30 mm的深小孔,深徑比達15.3,粗糙度為1.081 μm,錐度為0.074°。采用更長的工件以及FA-8樹脂的側壁絕緣工藝的電極,可加工出平均直徑1.939 mm、深60 mm、孔內壁粗糙度Ra 1.349μm、錐度0.092°、深徑比達31的深小孔。
[Abstract]:Deep holes are widely used in spaceflight, weapons, machinery, medical treatment and instruments. At present, deep holes are generally machined by mechanical drilling, laser, EDM and other methods, but the traditional mechanical processing has thermal deformation. It is difficult to process high strength and high hardness materials, while laser machining and EDM will produce defects such as recast layer and micro crack. Tube electrode Electrochemical Machining (ECM) technology has no cold hardening layer, electrode loss and hot recasting layer. There are no burrs and flashes at the orifice, and the processing range is not limited by the strength, hardness, toughness, melting point, thermal conductivity, etc. It has important research value to use tube electrode electrolysis machining technology to machining deep small hole. This paper designs and builds the tube electrode electrolysis machining device for deep small hole: the test device selects the machining scheme of fixed workpiece and electrode feed. The double roller extrusion is used as the feed mode; The feed device adopts the drive control based on PLC and realizes the control of different feed speed by programming. The electrode clamp was designed by using positive flow electrolyte flow mode. In order to improve the machining accuracy, the rectangular pulse power supply is selected as the machining power source. In order to avoid the phenomenon of short circuit and improve the processing stability, the pressure relief structure is designed at the outlet of deep hole. The side wall insulation is realized by organic coating process based on FA-8 resin. It can effectively improve the taper problem of deep holes. The flow field of machining clearance is simulated by COMSOL Multiphysics software, and the simulation results are obtained by setting different simulation parameters. The relationship between inlet pressure and processing stability is analyzed. The test results show that too small or too large inlet pressure of electrolyte will lead to poor processing stability. Finally, the inlet pressure of electrolyte was determined to be 0.4 MPA. The experiment was carried out to study the influence of current, pulse frequency, duty cycle and feed speed on the hole machining quality. The influence of machining parameters on the surface roughness, radial overcut and taper is analyzed. The results show that the feed speed is 0.66 mm / min and the current is 1.5 A. When the pulse frequency is 10 kHz and the duty cycle is 0.5, the processing effect is better. The average diameter is 1.962mm and the depth is 30mm. The deep diameter Prida is 15.3. The roughness is 1.081 渭 m and the taper is 0.074 擄. The average diameter of the electrode with longer workpiece and FA-8 resin is 1.939mm. Deep 60mm, roughness Ra 1.349 渭 m, taper 0.092 擄, deep diameter Prida 31 deep hole.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TG662
【參考文獻】
相關期刊論文 前10條
1 潘志福;張明岐;傅軍英;殷e,
本文編號:1357893
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/1357893.html
最近更新
教材專著