基于熱流固耦合的微型換熱器設(shè)計(jì)方法研究
發(fā)布時(shí)間:2018-07-05 18:30
本文選題:微型換熱器 + 熱流固耦合; 參考:《南昌大學(xué)》2015年碩士論文
【摘要】:以整體微通道換熱器為研究對(duì)象的流體流動(dòng)傳熱和結(jié)構(gòu)熱應(yīng)力的有限元數(shù)值模擬方法均面臨有限單元數(shù)過多誘發(fā)的通用計(jì)算機(jī)計(jì)算能力不夠的限制,從而使微通道換熱器結(jié)構(gòu)應(yīng)力模擬仿真至今仍是一項(xiàng)工程技術(shù)挑戰(zhàn),針對(duì)這一技術(shù)難題,本文研究提出了通過在對(duì)稱單元位移邊界施加等效彈性支撐約束來(lái)近似反映微通道壁面的熱脹冷縮的位移約束的簡(jiǎn)化模擬技術(shù)方法,并實(shí)現(xiàn)了微通道換熱器傳熱和結(jié)構(gòu)應(yīng)力的快速模擬,為微通道換熱器計(jì)算機(jī)輔助工程虛擬樣機(jī)設(shè)計(jì)奠定了基礎(chǔ)。本文基于對(duì)稱單元位移邊界施加等效彈性支撐約束的簡(jiǎn)化模擬技術(shù)方法,模擬研究了不同微通道換熱器的流阻特性、傳熱特性和結(jié)構(gòu)強(qiáng)度特性,為研發(fā)高效微通道換熱器提供了理論指導(dǎo)。研究主要取得如下成果:在微通道換熱器中截取對(duì)稱單元方法不能直接用于結(jié)構(gòu)應(yīng)力模擬仿真,而采用整體微型換熱器為對(duì)象的結(jié)構(gòu)應(yīng)力模擬仿真又面臨計(jì)算機(jī)計(jì)算能力的限制,所以微通道換熱器結(jié)構(gòu)應(yīng)力模擬仿真至今仍是一項(xiàng)工程技術(shù)挑戰(zhàn),而研究提出基于對(duì)稱單元的微通道換熱器結(jié)構(gòu)應(yīng)力的有限元簡(jiǎn)化模擬分析法是解決這一技術(shù)難題的關(guān)鍵。針對(duì)上述技術(shù)難題,本文首次研究提出了通過在對(duì)稱單元位移邊界施加等效彈性支撐約束來(lái)近似反映微通道壁面的熱脹冷縮的位移約束的微通道換熱器危險(xiǎn)區(qū)域熱流固耦合熱應(yīng)力的有限元簡(jiǎn)化數(shù)值模擬方法。基于對(duì)稱單元施加等效彈性約束的有限元簡(jiǎn)化數(shù)值模擬方法系統(tǒng)研究了不同微通道換熱器的流阻特性、傳熱特性和結(jié)構(gòu)強(qiáng)度特性,研究結(jié)果表明微通道換熱器流阻壓降從大到小排序?yàn)?三角形微通道?六邊形微通道?矩形微通道?橢圓形微通道?圓形微通道;冷流體實(shí)際被加熱效果從大到小排序?yàn)?三角形微通道?矩形微通道?六邊形微通道?橢圓形微通道?圓形微通道。傳熱速度從大到小的排序?yàn)?橢圓形微通道?圓形微通道?六邊形微通道?矩形微通道?三角形微通道,結(jié)構(gòu)強(qiáng)度從高到低排序?yàn)?三角形微通道?矩形微通道?六邊形微通道?圓形微通道?橢圓形微通道。
[Abstract]:The finite element numerical simulation method of fluid flow heat transfer and structural thermal stress, which is based on the whole microchannel heat exchanger, faces the limitation of the general computer computing ability caused by the excessive number of finite elements. Therefore, the stress simulation of microchannel heat exchanger structure is still a technical challenge. In this paper, a simplified simulation technique is proposed to approximate the displacement constraints of thermal expansion and contraction on the wall of microchannels by imposing equivalent elastic support constraints on the displacement boundary of symmetric elements. The fast simulation of heat transfer and structural stress of microchannel heat exchanger is realized, which lays a foundation for the computer aided engineering virtual prototype design of microchannel heat exchanger. In this paper, the flow resistance, heat transfer and structural strength characteristics of different microchannel heat exchangers are simulated based on the simplified simulation method with equivalent elastic bracing constraints imposed on the displacement boundary of symmetric elements. It provides theoretical guidance for the research and development of high efficiency microchannel heat exchanger. The main achievements are as follows: the method of intercepting symmetric elements in microchannel heat exchangers can not be directly used in structural stress simulation. However, the simulation of structural stress with the whole micro heat exchanger is faced with the limitation of computer computing ability, so the simulation of structural stress of microchannel heat exchanger is still a technical challenge in engineering up to now. The key to solve this technical problem is to propose a simplified finite element simulation method for structural stress of microchannel heat exchangers based on symmetric elements. In view of the technical difficulties mentioned above, In this paper, we present for the first time the thermal-fluid-solid coupling thermal stress in the dangerous region of microchannel heat exchanger by applying equivalent elastic support constraints on the displacement boundary of symmetric elements to approximate the displacement constraints of thermal expansion, cooling and contraction on the wall of the microchannel. Finite element simplified numerical simulation method. The flow resistance, heat transfer and structural strength characteristics of different microchannel heat exchangers are systematically studied by a simplified finite element numerical simulation method based on the equivalent elastic constraints imposed by symmetric elements. The results show that the order of pressure drop of flow resistance in microchannel heat exchanger from large to small is: triangular microchannel? Hexagonal microchannel? Rectangular microchannels? Oval microchannel? Circular microchannels; the actual heating effects of cold fluids are in order from large to small: triangular microchannels? Rectangular microchannels? Hexagonal microchannel? Oval microchannel? Circular microchannel. The order of heat transfer rate from large to small is: elliptical microchannel? Circular microchannels? Hexagonal microchannel? Rectangular microchannels? Triangular microchannels, structural strength from high to low order: triangular microchannel? Rectangular microchannels? Hexagonal microchannel? Circular microchannels? Oval microchannel.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ051.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 孫劍韜;姜琦;王軍紅;徐偉;王炅;;基于引信MEMS射流發(fā)電機(jī)的流固耦合分析[J];彈箭與制導(dǎo)學(xué)報(bào);2012年04期
2 谷芳;崔國(guó)起;黃勁松;秦競(jìng)?cè)?張曼;;基于熱流固耦合的換熱器溫差應(yīng)力分析[J];化工裝備技術(shù);2011年06期
3 梁建術(shù);蘇強(qiáng);李欣業(yè);;基于ANSYS/Workbench流固耦合輸液波紋管的模態(tài)分析[J];機(jī)械設(shè)計(jì)與制造;2013年02期
,本文編號(hào):2101300
本文鏈接:http://www.sikaile.net/kejilunwen/huaxuehuagong/2101300.html
最近更新
教材專著