基于盲反卷的耐火材料聲發(fā)射源信號恢復(fù)研究
本文選題:耐火材料 切入點(diǎn):聲發(fā)射源信號恢復(fù) 出處:《武漢科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:耐火材料是一種爐襯材料,它廣泛用于冶金、化工、石油、機(jī)械制造、硅酸鹽、動(dòng)力等工業(yè)領(lǐng)域,在冶金工業(yè)中用量最大,占總產(chǎn)量的50%~60%。耐火材料是否可靠直接關(guān)系到高爐的安全性和可靠性,因此,,有必要對耐火材料進(jìn)行安全檢測,這對于保障高爐結(jié)構(gòu)安全和避免重大安全事、提高產(chǎn)品質(zhì)量等等具有重大意義和應(yīng)用價(jià)值。近年來,聲發(fā)射技術(shù)和壓電傳感技術(shù)在狀態(tài)監(jiān)測和無損檢測領(lǐng)域得到了廣泛應(yīng)用,已取得了突破和重要科研成果,本文在以往專家學(xué)者的研究基礎(chǔ)上,采用盲反卷算法對聲發(fā)射信號傳播過程失真問題進(jìn)行了研究,并用壓電主動(dòng)傳感技術(shù)進(jìn)行了驗(yàn)證,最后對該方法的適用性進(jìn)行了分析。 本文的主要研究內(nèi)容有: (1)針對耐火材料聲發(fā)射信號傳播過程發(fā)生衰減、散射等失真問題,設(shè)計(jì)實(shí)驗(yàn)裝置,基于傳播路徑為線性系統(tǒng)這一前提,由斷鉛信號模擬耐火材料聲發(fā)射信號,采用盲目反卷積算法直接由接收信號對傳播路徑的沖擊響應(yīng)函數(shù)進(jìn)行估計(jì),設(shè)計(jì)濾波器恢復(fù)聲發(fā)射源信號。 (2)對聲發(fā)射信號傳播路徑的沖擊響應(yīng)函數(shù)進(jìn)行盲反卷估計(jì),發(fā)現(xiàn)對于不同的傳播路徑頻響曲線存在差異,表現(xiàn)為高頻成分衰減較低頻快,此外由于聲發(fā)射探頭的諧振作用,頻響曲線在150kHz處有明顯峰值。 (3)設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證盲反卷方法的可行性,利用壓電陶瓷片產(chǎn)生頻率及幅值確定的輸入信號,由輸入輸出信號計(jì)算傳播路徑的傳遞函數(shù),發(fā)現(xiàn)盲反卷算法在辨識未知的線性系統(tǒng)時(shí)具有一定可靠性,同時(shí)對盲反卷恢復(fù)的效果進(jìn)行了實(shí)驗(yàn)驗(yàn)證。 (4)對耐火材料三點(diǎn)彎曲實(shí)驗(yàn)聲發(fā)射信號進(jìn)行盲反卷恢復(fù),得到其能譜系數(shù),對比恢復(fù)前后信號各頻段的頻率成分,為耐火材料損傷狀態(tài)的準(zhǔn)確判斷提供參考。
[Abstract]:Refractory is a kind of lining material. It is widely used in metallurgy, chemical industry, petroleum, mechanical manufacturing, silicate, power industry and so on. Whether the refractories are reliable or not is directly related to the safety and reliability of the blast furnace. Therefore, it is necessary to carry out safety tests on the refractories, which is necessary to ensure the safety of the structure of the blast furnace and to avoid major safety incidents. In recent years, acoustic emission technology and piezoelectric sensing technology have been widely used in the field of state monitoring and nondestructive testing. In this paper, based on previous research by experts and scholars, the distortion problem of acoustic emission signal propagation is studied by blind deconvolution algorithm, and verified by piezoelectric active sensing technology. Finally, the applicability of the method is analyzed. The main contents of this paper are as follows:. 1) aiming at the distortion of acoustic emission signal propagation of refractories such as attenuation and scattering, an experimental device is designed. Based on the premise that the propagation path is linear, the acoustic emission signals of refractories are simulated by lead broken signals. Blind deconvolution algorithm is used to estimate the impulse response function of the propagation path directly from the received signal, and a filter is designed to recover the acoustic emission source signal. 2) Blind deconvolution estimation of impulse response function of acoustic emission signal is carried out. It is found that there are differences in frequency response curves for different propagation paths, which shows that the attenuation of high frequency component is faster than that of low frequency, in addition, because of the resonance effect of acoustic emission probe, The frequency response curve has obvious peak value at 150 kHz. The feasibility of blind deconvolution method is verified by designing experiments. The input signal determined by frequency and amplitude is generated by piezoelectric ceramic chip, and the transfer function of propagation path is calculated by input and output signal. It is found that the blind deconvolution algorithm is reliable in identifying unknown linear systems, and the effectiveness of blind deconvolution recovery is verified by experiments. (4) the acoustic emission signal of three-point bending experiment of refractories is recovered by blind deconvolution, the energy spectrum coefficient is obtained, and the frequency components of each frequency band of the signal before and after recovery are compared, which provides a reference for the accurate judgement of damage state of refractories.
【學(xué)位授予單位】:武漢科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ175.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 仇傲;周山宏;劉春梅;;數(shù)字化B超中的頻率補(bǔ)償濾波[J];電子科技大學(xué)學(xué)報(bào);2007年04期
2 陽能軍;王新剛;王蒙;;HHT在復(fù)合材料損傷聲發(fā)射信號處理中的應(yīng)用[J];電子測量技術(shù);2011年08期
3 許鳳旌,陳積懋;聲發(fā)射技術(shù)在復(fù)合材料發(fā)展中的應(yīng)用[J];機(jī)械工程材料;1997年04期
4 尹應(yīng)生;;提高精煉鋼包使用壽命及降低鋼包耐材成本的途徑[J];寬厚板;2009年04期
5 付佳斌;卿燕玲;衛(wèi)兵;楊禮兵;豐樹平;;同軸電纜測量納秒脈沖信號衰減的數(shù)字補(bǔ)償[J];強(qiáng)激光與粒子束;2011年10期
6 耿榮生;聲發(fā)射技術(shù)發(fā)展現(xiàn)狀——學(xué)會成立20周年回顧[J];無損檢測;1998年06期
7 劉松平,Michael Gorman,陳積懋;模態(tài)聲發(fā)射檢測技術(shù)[J];無損檢測;2000年01期
8 易若翔,劉時(shí)風(fēng),耿榮生,沈功田;人工神經(jīng)網(wǎng)絡(luò)在聲發(fā)射檢測中的應(yīng)用[J];無損檢測;2002年11期
9 李光海,劉時(shí)風(fēng),耿榮生,沈功田;聲發(fā)射源特征識別的最新方法[J];無損檢測;2002年12期
10 沈功田,戴光,劉時(shí)風(fēng);中國聲發(fā)射檢測技術(shù)進(jìn)展——學(xué)會成立25周年紀(jì)念[J];無損檢測;2003年06期
本文編號:1592728
本文鏈接:http://www.sikaile.net/kejilunwen/huaxuehuagong/1592728.html