CVD法制備石墨烯材料及其表征
本文關(guān)鍵詞:CVD法制備石墨烯材料及其表征 出處:《長安大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 石墨烯 化學(xué)沉積法 制備 表征 性能
【摘要】:在微電子和集成電路技術(shù)高速發(fā)展的今天,石墨烯由于其獨特的六角結(jié)構(gòu)賦予了其獨特的半導(dǎo)體特性,成為能夠取代硅材料的最理想的半導(dǎo)體材料,此外其還有很好的機械性能、很高的熱導(dǎo)率和良好的透光性等很多優(yōu)異性能,再加上其儲量豐富,自其出現(xiàn)以來走進(jìn)了越來越多研究者的視線。本文首先用化學(xué)沉積的方法以銅片為基片,生長了質(zhì)量較好的石墨烯材料,對其進(jìn)行轉(zhuǎn)移并用多種手段對其進(jìn)行表征測試和性能研究,本文的研究內(nèi)容和結(jié)果如下:(一)用化學(xué)沉積法在銅箔上生長了石墨烯結(jié)構(gòu),表征結(jié)果表明制備的石墨烯為單層,且具有石墨烯片的典型特征。(二)研究生長參數(shù)對實驗結(jié)果的影響。采取控制變量的實驗方法,生長過程中依次改變甲烷和氫氣分壓比(7:1,8:1,9:1,10:1)和生長時間(10 min,20 min,30min,40 min)。表征結(jié)果表明,通過改變生長過程中甲烷和氫氣的分壓比可以控制石墨烯的厚度和層數(shù),通過改變時間可以控制石墨烯在基片上的覆蓋率,7:1分壓比下生長30 min,最容易得到質(zhì)量較好、尺寸較大的石墨烯。(三)為了研究銅片U型折疊放置方式對石墨烯厚度均勻性的影響,選擇水平放置的銅片、折疊成U型上下層間距為5 mm、折疊成U型上下層間距為10 mm的銅片為生長基片,設(shè)計實驗并從兩個角度解釋了生長過程中的氣體動力學(xué)行為,最后對實驗結(jié)果進(jìn)行了預(yù)期:U型折疊放置間距較小的銅片上生長的石墨烯具有最好的厚度均一性。(四)對石墨烯的轉(zhuǎn)移方法進(jìn)行研究,轉(zhuǎn)移后的石墨烯片狀結(jié)構(gòu)更為清晰;對轉(zhuǎn)移到二氧化硅上的石墨烯進(jìn)行原子力顯微鏡表征,表征結(jié)果表明,石墨烯表面較為平整,厚度較為均勻;研究了轉(zhuǎn)移后退火過程對材料的影響,表征結(jié)果表明退火對于減小表面粗糙度、去除PMMA等雜質(zhì)有明顯作用。(五)對生長的石墨烯進(jìn)行光電性能測試分析。用分光光度計和IV測試儀對石墨烯的透光率和電學(xué)性能進(jìn)行測試,表征結(jié)果表明幾乎不同波段的透光率都在80%以上,具有一定的導(dǎo)電性;制備了Graphene-AZO異質(zhì)結(jié),表征結(jié)果表明其IV曲線沒有呈現(xiàn)整流特征,說明其沒有形成勢壘,還需要進(jìn)一步對石墨烯摻雜進(jìn)行研究。
[Abstract]:With the rapid development of microelectronics and integrated circuit technology, graphene has become the ideal semiconductor material to replace silicon because of its unique hexagonal structure. In addition, it also has good mechanical properties, high thermal conductivity and good transmittance and many other excellent properties, plus its rich reserves. Since its appearance, more and more researchers have come into view. Firstly, the graphene material of good quality was grown by chemical deposition method, using copper as substrate. The structure of graphene was grown on copper foil by chemical deposition method. The results of this study are as follows: (1) graphene structure was grown on copper foil by chemical deposition method. The characterization results show that the graphene prepared is monolayer and has the typical characteristics of graphene sheet. (2) the influence of the length parameters of graduate students on the experimental results. During the growth process, the partial pressure ratio of methane and hydrogen was changed by 7: 1: 8: 1: 9: 1: 10: 1) and the growth time was 10 min / 20 min / min ~ 30 min. The characterization results show that the thickness and the number of layers of graphene can be controlled by changing the partial pressure ratio of methane and hydrogen in the growth process, and the coverage of graphene on the substrate can be controlled by changing the time. In order to study the effect of U-fold placement on the thickness uniformity of graphene, graphene with larger size can be obtained most easily when it is grown for 30 mins at the partial pressure ratio of 7: 1, in order to study the effect of U-fold placement on the uniformity of graphene thickness. The horizontal copper sheet was selected to fold into a U-shaped upper and lower layer spacing of 5 mm, and a U-shaped upper and lower layer spacing of 10 mm copper as the growth substrate. The experiment was designed and the gas dynamic behavior during the growth process was explained from two angles. Finally, the experimental results are expected to have the best thickness uniformity of graphene grown on copper sheets with small folding spacing. (4) the transfer method of graphene is studied. The flake structure of the transferred graphene is clearer. The graphene transferred to silica was characterized by AFM. The results showed that the surface of graphene was flat and the thickness was uniform. The effect of post-transfer annealing process on the surface roughness was studied. The characterization results show that annealing can reduce the surface roughness. Removal of impurities such as PMMA has obvious effect. (5) the optoelectronic properties of graphene have been tested and analyzed. The transmittance and electrical properties of graphene have been tested by spectrophotometer and IV tester. The characterization results show that the transmittance of almost different bands is above 80%, which has a certain conductivity. Graphene-AZO heterojunction was prepared. The characterization results show that the IV curve does not exhibit rectifying characteristics, which indicates that there is no barrier, and further study on graphene doping is needed.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TQ127.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李良;付志兵;焦興利;唐永建;王朝陽;易勇;;乙醇為碳源的低氫常壓CVD法制備石墨烯薄膜及其生長機理研究[J];原子能科學(xué)技術(shù);2015年03期
2 陳偉;李福山;郭太良;;石墨烯在光電器件中的應(yīng)用[J];科技導(dǎo)報;2015年05期
3 馮偉;張建華;楊連喬;;拋光銅襯底表面形貌對CVD制備石墨烯的影響[J];功能材料;2015年01期
4 原梅妮;向豐華;郎賢忠;弓巧娟;;石墨烯的制備方法與工藝研究進(jìn)展[J];兵器材料科學(xué)與工程;2015年01期
5 敏世雄;呂功煊;;基于石墨烯光催化劑研究進(jìn)展[J];分析測試技術(shù)與儀器;2014年04期
6 葉小亮;;基于ZnO/Graphene納米復(fù)合材料紫外光探測器的制備與實現(xiàn)[J];上海電機學(xué)院學(xué)報;2014年06期
7 韓林芷;趙占霞;馬忠權(quán);;化學(xué)氣相沉積法制備大尺寸單晶石墨烯的工藝參數(shù)研究[J];物理學(xué)報;2014年24期
8 陳佳;雷憶三;榮偉;賈豐溥;蘇青林;;石墨烯的制備技術(shù)研究進(jìn)展[J];材料開發(fā)與應(yīng)用;2014年06期
9 楊連喬;馮偉;王浪;張建華;;銅基石墨烯的CVD法制備工藝參數(shù)研究[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2014年10期
10 李紹娟;甘勝;沐浩然;徐慶陽;喬虹;李鵬飛;薛運周;鮑橋梁;;石墨烯光電子器件的應(yīng)用研究進(jìn)展[J];新型炭材料;2014年05期
,本文編號:1407008
本文鏈接:http://www.sikaile.net/kejilunwen/huaxuehuagong/1407008.html