草酸二甲酯催化加氫硅酸銅催化劑的研究
[Abstract]:As an important raw material in chemical industry, ethylene glycol is widely used in the production of polyester and other industries. The traditional mode of production uses petroleum as raw material to produce. With the increasing shortage of petroleum resources, the technology of making ethylene glycol from coal has been paid more and more attention by researchers. This technology refers to the selective hydrogenation of oxalate to produce ethylene glycol from gas. The key step is the hydrogenation of oxalate to ethylene glycol. The current copper-based catalysts have not been able to meet the industrial needs, and there are problems of catalytic activity and stability. Although researchers at home and abroad have done a lot of research on this subject and put forward different theories about the active centers of copper-based catalysts (Cu0 or Cu or Cu0-Cu collaboration), although there are differences, it is certain that, The method of controlling species composition and valence distribution on the surface of catalyst is the fundamental way to develop high performance oxalate hydrogenation catalyst. In this paper, coprecipitation method was used to prepare copper silicate catalyst. The interaction between active component and carrier during precipitation was studied. The effect of variable parameters on the catalytic performance of the catalyst was investigated and the preparation process was optimized. In addition, in order to solve the problem that the catalyst is easy to be deactivated by sintering at high temperature, the additive zinc is added to improve the thermal stability of the catalyst. The results are as follows: (1) in the process of preparing copper silicate catalyst by precipitation method, the precipitation mode has a great influence on the particle size of copper species and the dispersion on the carrier. The catalytic properties of the catalyst prepared by precipitation of copper nitrate drop with silicic acid are better than that of the catalyst prepared by the precipitation of copper nitrate with sodium silicate, that is, the catalyst prepared by the appropriate precipitation method has a good dispersion of active species and more active centers. In the precipitation process, the precipitation rate had a slight effect on the conversion of the reaction, but had little effect on the selectivity of the target product. The conversion rate of dimethyl oxalate increased slightly with the increase of precipitation time. The ratio of copper to silicon has a great influence on the catalytic performance of the catalyst, the ratio of copper to silicon is too low, the activity of the catalyst is less and the catalytic activity is weak; if the ratio of copper to silicon is too high, the active species tend to aggregate mutually, the particles grow up and the distribution is uneven, thus the activity of the catalyst will also decrease. The experimental results show that the optimum copper-silicon ratio is 0.85: 1, and the DMO conversion is 90.5 and EG selectivity is 82.7%. (2) in the study of zinc modified copper silicate catalyst, The method of introducing zinc has different influence on the catalyst. The results show that when copper and zinc are precipitated with sodium silicate at the same time, there is interaction between copper and zinc, and zinc can promote the dispersion of copper species. The effect of zinc content on the performance of the catalyst is great. When the amount of zinc is low, the effect of the catalyst is not obvious, but when the amount of zinc is too much, the active center will be wrapped. Therefore, the suitable catalyst composition is Cu0.8Zn0.2/SiO2, the conversion of the catalyst is 99.5 and the selectivity of 91.5% is the best result. The deactivation resistance test also shows that the conversion is 99%, and the activity is relatively stable.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TQ223.162;O643.36
【相似文獻】
相關期刊論文 前10條
1 韓素芬,瞿晚星;銅催化劑中雜質(zhì)元素測定方法的建立[J];有機硅材料;2004年05期
2 ;丙烯腈催化水合制丙烯酰胺骨架銅催化劑研制報告[J];勝利石油化工;1977年02期
3 金蘭惠;;制備硅載體銅催化劑用于糠醛氫化[J];林產(chǎn)化工通訊;1989年04期
4 李克順;;年產(chǎn)100噸銅催化劑生產(chǎn)裝置建成投產(chǎn)[J];化工新型材料;1991年12期
5 京山;;凈化汽車廢氣的鉻和銅催化劑正在研制[J];精細與專用化學品;1992年03期
6 陳守堂;;硝基苯加氫改性銅催化劑通過技術鑒定[J];精細與專用化學品;1993年11期
7 ;硝基苯流化床改性銅催化劑及工業(yè)推廣應用通過鑒定[J];吉化科技;1993年01期
8 鄒家禹;用于甲基氯烷合成的銅催化劑的制備及評價[J];有機硅材料及應用;1996年04期
9 田申;從有機硅工廠廢渣中回收銅[J];化學教育;1984年06期
10 曾小君,楊高文,徐肖邢,楊剛;高效耐氮脫氫骨架銅催化劑的制備及吸附量熱研究[J];常熟高專學報;2000年04期
相關會議論文 前9條
1 吳貴升;王路存;劉永梅;曹勇;戴維林;賀鶴勇;范康年;;銅催化劑表面氧物種在甲醇水蒸氣重整過程中作用機制研究[A];第十三屆全國催化學術會議論文集[C];2006年
2 于雪;羅家還;王振旅;張文祥;;有機胺配合的銅催化劑及其對乙醇脫氫合成乙酸乙酯的催化性能[A];第十四屆全國青年催化學術會議會議論文集[C];2013年
3 楊綠娟;朱文明;張慶紅;王野;;釩修飾的銅催化劑上的丙烯環(huán)氧化反應[A];第十一屆全國青年催化學術會議論文集(下)[C];2007年
4 屈孝銘;李廷義;謝觀雷;毛金成;;鐵/銅催化劑體系用于雙C-O(S)反應的研究[A];第十六屆全國金屬有機化學學術討論會論文集[C];2010年
5 羅發(fā)亮;張小玲;宋軍超;馬清祥;趙天生;杜彥忠;;H_2O_2-H_2SO_4改性AC載體及對催化合成DMC活性的影響[A];第十三屆全國催化學術會議論文集[C];2006年
6 吳貴升;毛東森;盧冠忠;;ZrO_2和La_2O_3對銅催化劑甲醇水蒸氣重整反應性能的影響?[A];第五屆全國環(huán)境催化與環(huán)境材料學術會議論文集[C];2007年
7 東宇;馬淳安;宋慶寶;;咪唑基查爾酮的合成[A];中國化學會第二十五屆學術年會論文摘要集(上冊)[C];2006年
8 孫傳智;高飛;齊蕾;于武江;萬海勤;董林;陳懿;;少量ZrO_2摻雜銳鈦型TiO_2負載氧化銅催化劑在NO+CO中的反應性能研究[A];第六屆全國環(huán)境催化與環(huán)境材料學術會議論文集[C];2009年
9 徐翠蓮;王敏燦;王曉丹;王建海;;手性二茂鐵基膦-銅催化劑在催化二乙基鋅對β-芳基硝基烯烴的不對稱加成反應中的應用[A];第七屆全國磷化學化工暨第四屆海峽化學生物學、生物技術與醫(yī)藥發(fā)展討論會論文集[C];2006年
相關碩士學位論文 前10條
1 王霞;介孔炭材料負載銅催化劑甲醇氧化羰基化性能研究[D];太原理工大學;2016年
2 方志強;介孔MCM-41負載銅配合物催化劑在醇氧化與碳—雜鍵形成反應中的應用[D];廣東藥科大學;2016年
3 丁丁;草酸二甲酯催化加氫硅酸銅催化劑的研究[D];合肥工業(yè)大學;2016年
4 張俊茹;廢棄含銅催化劑資源化研究[D];西南科技大學;2015年
5 高林娜;膠體銅催化劑催化特征的研究及量化計算[D];中國海洋大學;2005年
6 阮桂玉;銅催化劑活化C H鍵反應機理的理論研究[D];蘇州大學;2015年
7 朱瓊芳;活性炭載銅催化劑的制備與催化性能研究[D];太原理工大學;2011年
8 張巖;碳納米管填充氧化銅催化劑的制備及性能研究[D];哈爾濱工業(yè)大學;2008年
9 王津津;新型希夫堿—銅催化劑的開發(fā)及催化甲基丙烯酸甲酯聚合的研究[D];西北大學;2012年
10 李治國;硫酸處理HZSM-5分子篩負載銅催化劑選擇性催化還原一氧化氮的研究[D];汕頭大學;2006年
,本文編號:2358272
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/2358272.html