PTA氧化過程中4-CBA含量的軟測量建模研究
[Abstract]:The PTA oxidation process is an important chemical reaction process in petrochemical production. The reaction product is an important chemical raw material for the production of polyester products. 4-CBA is the main by-product in the oxidation process. The reaction conditions of the PTA oxidation process are harsh. The reaction mechanism and reaction process are complex, and the soft sensing technique is used to predict the reaction process in real time. Soft sensing technology uses some measurable variables to predict unmeasurable variables. In this paper, the oxidation process of PTA is studied. Taking the content of 4-CBA as the research object, the soft sensing model is established by AdaBoost algorithm. The AdaBoost algorithm is a combination algorithm, which combines a group of weak learning devices with different training into strong learning devices. In this paper, BP neural network and support vector machine are selected as weak learning devices. In order to solve the problem of training weakening in AdaBoost algorithm, the method of double threshold is used to update the weight of samples, to reduce the influence of the samples with large errors on the weak learner, and the method of roulette is used to resample the samples. The feasibility of the improved algorithm is proved by nonlinear function fitting. Aiming at the soft sensing model of 4-CBA content in the process of PTA oxidation, BP neural network and support vector machine are used as weak learning devices, and the improved AdaBoost algorithm is used as strong learning device to establish soft sensor model. The 4-CBA content is predicted by MATLAB training simulation. And compared with the single weak learner model and the unimproved AdaBoost algorithm, it is proved that the improved soft sensor model based on the improved AdaBoost algorithm is more accurate in these models.
【學位授予單位】:南京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP18;O633.14
【參考文獻】
相關(guān)期刊論文 前10條
1 劉慶華;丁文濤;涂娟娟;方守恩;;優(yōu)化BP_AdaBoost算法及其交通事件檢測[J];同濟大學學報(自然科學版);2015年12期
2 袁雙;呂賜興;;基于PCA改進的快速Adaboost算法研究[J];科學技術(shù)與工程;2015年29期
3 查翔;倪世宏;張鵬;;關(guān)于AdaBoost.RT集成算法時間序列預測研究[J];計算機仿真;2015年09期
4 曹瑩;苗啟廣;劉家辰;高琳;;AdaBoost算法研究進展與展望[J];自動化學報;2013年06期
5 胡國勝;;基于加權(quán)支持向量機與AdaBoost集成的預測模型研究[J];計算機應用與軟件;2012年12期
6 金斌;高計勇;;CL語言在4-CBA軟測量中的應用[J];石油化工自動化;2012年05期
7 姚科田;邵之江;陳曦;紀彭;蔣鵬飛;;基于數(shù)據(jù)驅(qū)動技術(shù)和工藝機理模型的PTA生產(chǎn)過程軟測量建模方法[J];計算機與應用化學;2010年10期
8 王孝紅;劉文光;于宏亮;;工業(yè)過程軟測量研究[J];濟南大學學報(自然科學版);2009年01期
9 王立;朱學峰;;一種基于Boosting的在線回歸算法[J];計算機測量與控制;2008年06期
10 董輝;傅鶴林;冷伍明;龍萬學;;Boosting集成支持向量回歸機的滑坡位移預測[J];湖南大學學報(自然科學版);2007年09期
相關(guān)會議論文 前1條
1 李雅芹;楊慧中;;基于改進的Adaboost.RT模糊支持向量回歸機集成算法[A];2009年中國智能自動化會議論文集(第二分冊)[C];2009年
相關(guān)博士學位論文 前1條
1 牟盛靜;石化工業(yè)過程建模與優(yōu)化若干問題研究[D];浙江大學;2004年
相關(guān)碩士學位論文 前3條
1 張茂強;精對苯二甲酸生產(chǎn)技術(shù)工藝研究[D];山東大學;2007年
2 邵可可;PTA生產(chǎn)工藝的全流程模擬[D];浙江大學;2007年
3 劉潔;對苯二甲酸生產(chǎn)全流程模擬[D];天津大學;2007年
,本文編號:2279939
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/2279939.html