冷鮮豬肉新鮮度的三維熒光光譜無損檢測方法
[Abstract]:China is a big country of pork production and consumption in the world. Cold and fresh pork products are the main form of pork consumption in China. Among many nondestructive detection methods for pork freshness, fluorescence spectroscopy has attracted the attention of scholars at home and abroad for its good specificity, high sensitivity, fast, nondestructive and low detection cost. A new fluorescence spectroscopy technique has been developed in the past 30 years to obtain fluorescence intensity results when excitation and emission wavelengths change simultaneously. In this paper, the original three-dimensional fluorescence spectra of chilled pork were analyzed firstly, and then the original three-dimensional fluorescence of chilled pork was separated by parallel factor method. Based on the separated fluorescent components, the characteristic excitation emission matrix was constructed. Finally, the classification of freshness and the non-destructive detection methods of physical and chemical indexes (volatile base nitrogen, thiobarbituric acid and pH) of freshness of chilled pork were studied by chemometrics. The results show that: 1) There are three fluorescence peaks in the original three-dimensional fluorescence spectrogram of chilled pork, which are called A, B and C. The excitation wavelength (lambda Ex) and emission wavelength (lambda Em) ranges are: lambda Ex = 250-310 nm, lambda Em = 300-400 nm, respectively. The fluorescence peak A of lean meat and fat meat showed similar changing trend: the peak A of lean meat and fat meat decreased rapidly at the beginning of 2 days and slowly at the beginning of 2-4 days; the fluorescence peak B of lean meat and fat meat changed slightly during the experiment period at 4 C, and the fluorescence peak B of lean meat and fat meat decreased as a whole. The variation trend was similar: the peak value of fluorescence B increased slowly in the first two days and rapidly in the second to fourth days at 20 C storage, and changed little during the experimental period at 4 C storage, and showed an overall upward trend. (2) The separation methods of fluorescence components in the original three-dimensional fluorescence spectra of chilled pork were studied, and the fluorescence response of chilled pork to the previous studies was also studied. Five main fluorescent components (C1, C2, C3, C4, C5) were separated from the original three-dimensional fluorescence spectra of chilled pork by parallel factor analysis, and their corresponding fluorescence peaks were located at: lambda Ex = 260-320 nm, lambda Em = 300-400 nm, lambda Ex = 290-320 nm, lambda mE300-400 nm, lambda Ex = 260-440 nm, lambda Em = 360-500 nm, lambda Ex = 390-320-400 nm, respectively. 480 nm, lambda Em = 420-550 nm, lambda Ex = 440-500 nm, lambda Em = 470-550 nm. According to the existing literature, the fluorescent components C1-C4 are tryptophan, vitamin B6, reduced coenzyme (NADH) and riboflavin, respectively, but the fluorescent components C5 (lambda Ex = 440-500 nm, lambda Em = 470-550 nm) are unknown for the time being. (3) The SVM and PLS classification methods are compared with different modeling excitation methods. The results showed that: 1) The single excitation wavelength matrix constructed by the same fluorescent component was used as input variable, and the classification effect of the PLS method was better than that of the SVM model. When the matrix (XEx5) was categorical input variables, the overall classification accuracy of the established SVM and PLS chilled pork freshness detection models was the highest in the overall classification rate. In the classification model of PLS fresh pork freshness based on the matrix of different excitation wavelengths, the multiple excitation matrix (XC5) constructed by fluorescence component C5 was used as the input variable, and the chilled pigs were established as the input variables. The accuracy of the model was the highest..2 The prediction set of meat freshness classification model had the highest overall classification accuracy of 87.9%. (4) The effects of SMLR and PLSR quantitative analysis methods combined with different modeling excitation emission matrices on the quantitative analysis results of fresh pork freshness indices (TVB-N, TBA and pH) were compared. The model established by PLSR method is better than that established by SMLR method. 2) The model based on the multi-excitation wavelength matrix (Xc4) constructed by fluorescent component C4 is the most suitable for quantitative analysis of TVB-N content (rp). The total excitation wavelength matrix (Xall) constructed by all fluorescent components was used as the modeling matrix. The PLSR method was most suitable for quantitative analysis of TBA and pH values (rp 0.80, 0.90, RMSEP 0.0316 mg/kg, 0.2789, respectively).
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O657.3;TS251.51
【相似文獻】
相關(guān)期刊論文 前10條
1 王斌,蘇喜生,李德遠,應建華,劉建鋒,王爽智;保鮮豬肉的研究[J];食品科學;2000年12期
2 彭增起,徐幸蓮,周幸;提高超市生鮮豬肉安全品質(zhì)的幾項措施[J];食品科學;2003年08期
3 ;怎樣選購鮮豬肉[J];吉林農(nóng)業(yè);2004年03期
4 倪合一;凍豬肉比熱鮮豬肉更安全[J];山東食品科技;2004年11期
5 鄒亞梅;;深圳肉業(yè)龍頭首批冰鮮豬肉輸港[J];當代畜禽養(yǎng)殖業(yè);2011年06期
6 劉偉美;鑒別鮮豬肉與注水肉的幾種簡單方法[J];肉類工業(yè);2000年02期
7 ;中華人民共和國國家標準豬肉衛(wèi)生標準[J];山東食品科技;2001年01期
8 廣科;用茶葉可保鮮豬肉[J];農(nóng)村新技術(shù);2002年12期
9 ;豬肉巧辨別[J];中國農(nóng)村科技;2003年04期
10 劉繼榮,王曉蘭,孫方中,梁學福;鮮豬肉幾項衛(wèi)生指標的檢測[J];中國獸醫(yī)雜志;2004年04期
相關(guān)會議論文 前9條
1 解華東;布麗君;李星;林保忠;;豬肉的污染及市售熱鮮豬肉品質(zhì)的檢驗[A];第五屆中國畜牧科技論壇論文集[C];2011年
2 郝廷堯;;怎樣選購鮮豬肉[A];第五屆重慶飼料工業(yè)暨養(yǎng)殖行業(yè)發(fā)展戰(zhàn)略研討會論文集[C];2009年
3 范洪波;李燕凌;彭首創(chuàng);丁寧;董瑩;;出口港澳冰鮮豬肉的關(guān)鍵工藝和檢驗檢疫監(jiān)管[A];中國畜牧獸醫(yī)學會2008年學術(shù)年會暨第六屆全國畜牧獸醫(yī)青年科技工作者學術(shù)研討會論文集[C];2008年
4 李翠玲;湯修映;彭彥昆;王銘武;;基于多光譜成像的生鮮豬肉貨架期預測研究[A];管產(chǎn)學研助推食品安全重慶高峰論壇——2011年中國農(nóng)業(yè)工程學會農(nóng)產(chǎn)品加工及貯藏工程分會學術(shù)年會暨全國食品科學與工程博士生學術(shù)論壇論文集[C];2011年
5 張海云;王偉;趙松瑋;劉巧巧;彭彥昆;;基于近紅外光譜的生鮮豬肉水分無損快速檢測研究[A];中國農(nóng)業(yè)工程學會2011年學術(shù)年會論文集[C];2011年
6 李翠玲;湯修映;彭彥昆;王銘武;;基于多光譜成像的生鮮豬肉貨架期預測研究[A];中國農(nóng)業(yè)工程學會2011年學術(shù)年會論文集[C];2011年
7 林朝朋;謝如鶴;;各種物流模式下生鮮豬肉的品質(zhì)變化及安全風險評價[A];中國制冷學會2009年學術(shù)年會論文集[C];2009年
8 袁先群;賀稚非;李洪軍;李燕利;姚艷玲;蔣麗施;付軍杰;全拓;;不同貯藏溫度托盤包裝冷鮮豬肉的品質(zhì)變化[A];管產(chǎn)學研助推食品安全重慶高峰論壇——2011年中國農(nóng)業(yè)工程學會農(nóng)產(chǎn)品加工及貯藏工程分會學術(shù)年會暨全國食品科學與工程博士生學術(shù)論壇論文集[C];2011年
9 王彥波;韓劍眾;勵建榮;;水溶性殼聚糖對生鮮豬肉貯藏及品質(zhì)的影響研究[A];中國食品科學技術(shù)學會第七屆年會論文摘要集[C];2010年
相關(guān)重要報紙文章 前10條
1 楊玲麗 韓華彬;深圳冰鮮豬肉首次供澳[N];中國國門時報;2006年
2 流石;鮮豬肉的感官鑒別[N];中國食品質(zhì)量報;2001年
3 記者 葛輝文;市城區(qū)豬肉零售價每公斤昨起降1元[N];常德日報;2006年
4 木子;內(nèi)地冰鮮豬肉23日首次供港[N];國際商報;2006年
5 楊玲麗邋姜曉麒;內(nèi)地首批冰鮮豬肉小包裝產(chǎn)品抵港[N];中國國門時報;2007年
6 肖中華 粟澤雄;全市鮮豬肉質(zhì)量安全評比活動啟動[N];湘潭日報;2006年
7 黃繼亮 肖勁松;“貼心”贏“民心”[N];中國國門時報;2011年
8 吳恂 周軍;內(nèi)地冰鮮豬肉首次供港[N];國際商報;2006年
9 李玫 古國真 何紅梅 劉勃;內(nèi)地冰鮮豬肉首次供港[N];深圳商報;2006年
10 記者 張鵬毅;海南冰鮮豬肉首次出口香港[N];海南日報;2006年
相關(guān)博士學位論文 前2條
1 林朝朋;生鮮豬肉供應鏈安全風險及控制研究[D];中南大學;2009年
2 劉善梅;基于高光譜成像技術(shù)的冷鮮豬肉品質(zhì)無損檢測方法研究[D];華中農(nóng)業(yè)大學;2015年
相關(guān)碩士學位論文 前10條
1 靳玉龍;冷鮮豬肉微生物污染現(xiàn)狀及大腸桿菌污染預測模型的構(gòu)建[D];西北農(nóng)林科技大學;2015年
2 游梁;基于物聯(lián)網(wǎng)的生鮮豬肉電商與超市融合模式研究[D];江漢大學;2015年
3 畢瑋;生鮮豬肉質(zhì)量安全風險評價及控制研究[D];哈爾濱商業(yè)大學;2016年
4 任夢佳;冷鮮豬肉新鮮度的三維熒光光譜無損檢測方法[D];浙江大學;2017年
5 稅雪;成都市冷鮮豬肉市場消費者行為研究[D];四川農(nóng)業(yè)大學;2011年
6 劉超群;冷鮮豬肉中微生物預測模型的建立及控制工藝研究[D];武漢工業(yè)學院;2011年
7 金鑫;熱鮮豬肉食用品質(zhì)及其特定腐敗菌預測模型的研究[D];南京農(nóng)業(yè)大學;2012年
8 張敏;塑料包裝材料的透氧性對豬肉色澤及鮮度影響的研究[D];西南農(nóng)業(yè)大學;2005年
9 林菊;鮮豬肉氣調(diào)貯藏保鮮技術(shù)研究[D];江西農(nóng)業(yè)大學;2013年
10 宋星霖;冷鏈豬肉環(huán)境信息檢測及貨架期預測研究[D];浙江大學;2015年
,本文編號:2181218
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/2181218.html