高分子量可交聯(lián)聚芳醚腈的結(jié)構(gòu)與性能關(guān)系研究
本文選題:聚芳醚腈 + 鄰苯二甲腈封端 ; 參考:《電子科技大學(xué)》2017年博士論文
【摘要】:聚芳醚腈因其分子結(jié)構(gòu)中含有剛性的基團及耐熱性的氧醚鍵而表現(xiàn)出優(yōu)異的力學(xué)性能、電性能、耐化學(xué)腐蝕性能、耐磨性、尺寸穩(wěn)定性、無毒等優(yōu)點。同時,由于強極性基團氰基側(cè)基的存在賦予其與許多物質(zhì)具有良好的粘結(jié)性,為制備高性能功能化復(fù)合材料提供了良好的基礎(chǔ),因此聚芳醚腈在商業(yè)界和學(xué)術(shù)界引起了廣泛關(guān)注。但是傳統(tǒng)的聚芳醚腈是一類線性的熱塑性工程塑料,其耐熱性和剛性較差。隨著高科技及軍事軍用等的長足發(fā)展,耐超高溫材料及自阻燃材料的研發(fā)迫在眉睫,目前,唯一滿足美國海軍阻燃標(biāo)準的高分子材料是鄰苯二甲腈聚合物。但鄰苯二甲腈樹脂作為一類熱固性工程塑料,其成型加工性較差。因此,本文基于以上研究背景,結(jié)合了聚芳醚腈和鄰苯二甲腈樹脂的優(yōu)點,合成了一種鄰苯二甲腈封端的可交聯(lián)聚芳醚腈,其在高溫?zé)崽幚砬翱刹捎脽崴苄圆牧系募庸すに囍苽涓鞣N形狀的材料,再經(jīng)過高溫?zé)崽幚硎蛊渚哂信c熱固性樹脂相媲美的耐高溫性,而研究可交聯(lián)聚芳醚腈的結(jié)構(gòu)與性能之間的關(guān)系對聚芳醚腈的開發(fā)應(yīng)用具有重要的指導(dǎo)意義。本論文首先通過分子設(shè)計,采用2,6-二氯苯甲腈與聯(lián)苯二酚、對苯二酚為原料,其中聯(lián)苯二酚適當(dāng)過量,合成了酚羥基封端的聚芳醚腈,再通過4-硝基鄰苯二甲腈與羥基進行親核取代反應(yīng),合成了鄰苯二甲腈封端的聚芳醚腈,即可交聯(lián)聚芳醚腈,并利用核磁、紅外光譜等手段對其結(jié)構(gòu)進行了表征。聯(lián)苯二酚過量的比例不同導(dǎo)致合成的聚芳醚腈具有不同的分子量。熱處理前,分子量的大小對聚芳醚腈的熱學(xué)性能、力學(xué)性能都有較大影響,而熱處理后,由于交聯(lián)反應(yīng)使得分子量存在數(shù)量級差別的聚芳醚腈之間的熱學(xué)性能、力學(xué)性能差距大大減小。同時,通過改變聯(lián)苯二酚與對苯二酚的摩爾比,可得到不同結(jié)構(gòu)不同性能的可交聯(lián)聚芳醚腈。結(jié)果表明,隨著對苯二酚比例的增加,聚芳醚腈的結(jié)晶能力逐漸降低,而聯(lián)苯二酚與對苯二酚摩爾比為83:20的可交聯(lián)聚芳醚腈在具有良好結(jié)晶能力的同時具有最佳的力學(xué)性能。通過流變、DSC、XRD等測試手段發(fā)現(xiàn)可交聯(lián)聚芳醚腈中同時存在結(jié)晶行為與交聯(lián)行為,因此本文采用DSC,利用Jeziorny法對可交聯(lián)聚芳醚腈的結(jié)晶動力學(xué)進行了研究,得到結(jié)晶動力學(xué)參數(shù),推測出可交聯(lián)聚芳醚腈的晶體呈現(xiàn)類球狀,并通過偏光顯微鏡和掃描電子顯微鏡對晶體形貌進行了驗證。利用Kissinger法計算得到結(jié)晶活化能為152.7 KJ/mol,交聯(lián)反應(yīng)活化能為174.8 KJ/mol。同時,研究了熱處理溫度對聚芳醚腈交聯(lián)反應(yīng)及其性能的影響,發(fā)現(xiàn)隨著熱處理溫度的升高,聚芳醚腈體系中的交聯(lián)程度增大。在常壓下,當(dāng)熱處理溫度達到320℃時,由于交聯(lián)反應(yīng)較為劇烈從而抑制了晶體的生成,因此,適當(dāng)?shù)臒崽幚頊囟仁蔷鄯济央骟w系中結(jié)晶行為與交聯(lián)行為并存的重要因素。在以上的研究基礎(chǔ)上,通過熱壓法制備了可交聯(lián)聚芳醚腈單組分復(fù)合材料,并對熱壓溫度,熱壓時間對其性能的影響做了系統(tǒng)地研究。當(dāng)溫度小于280℃熱處理時,由于交聯(lián)反應(yīng)十分緩慢,使得聚芳醚腈體系中產(chǎn)生大量晶體,在240-280℃溫度范圍內(nèi),隨著熱壓溫度的升高或熱壓時間的增加,可交聯(lián)聚芳醚腈單組分復(fù)合材料的結(jié)晶度的變化較小,但其交聯(lián)度隨之大幅度增加,因此晶體通過無定型區(qū)的交聯(lián)反應(yīng)被固定在聚芳醚腈樹脂中,從而提高了聚芳醚腈的綜合性能。在該單組分復(fù)合材料中,晶體與交聯(lián)點共同充當(dāng)增強相,從而提高材料的力學(xué)性能和熱學(xué)性能。最后,通過填料簡單填充制備了二氧化硅增強聚芳醚腈復(fù)合材料,當(dāng)納米二氧化硅的填料為12 wt%時,復(fù)合材料的拉伸強度比純聚芳醚腈薄膜增加了14%;通過溶劑熱法制備了具有優(yōu)異的吸波性能的聚芳醚腈/Fe_3O_4磁性雜化微球,由于Fe_3O_4磁性雜化微球表面具有氰基基團,因此可以和聚芳醚腈基體樹脂在高溫下發(fā)生交聯(lián)反應(yīng),從而制備了具有磁性的聚芳醚腈/雜化微球復(fù)合薄膜;最后,還制備了聚芳醚腈/GO-CNT高介電復(fù)合材料,在銅離子與羧基的絡(luò)合作用下,氧化石墨烯與酸化碳納米管組合成三維結(jié)構(gòu),并且在高溫下,在銅離子的存在下,聚芳醚腈發(fā)生交聯(lián)反應(yīng)形成了酞菁銅,從而得到了具有高介電常數(shù)、高強度的聚芳醚腈復(fù)合材料。綜上所述,高分子量可交聯(lián)聚芳醚腈這種新型的特種高分子在高新技術(shù)領(lǐng)域中將具有不可小覷的潛在應(yīng)用。
[Abstract]:Poly aryl ether nitrile has excellent mechanical properties, electrical properties, chemical corrosion resistance, wear resistance, dimensional stability and non-toxic, because of its rigid group and heat resistant oxygen ether bond in its molecular structure. At the same time, the presence of the strong polar group cyanide side group gives it good bonding with many substances, and is prepared for high performance. The functionalized composites provide a good foundation, so polyaronitrile has attracted wide attention in the business and academic circles. However, the traditional polyaryl ether nitrile is a class of linear thermoplastic engineering plastics, whose heat resistance and rigidity are poor. With the rapid development of high technology and military military, the research of super high temperature resistant materials and self flame retardant materials At present, the only polymer that meets the flame retardant standard of the United States Navy is the polymer of phthalic two methonitrile. But phthalonitrile resin as a kind of thermosetting engineering plastics has poor processing property. Therefore, based on the above research background, this paper combines the advantages of poly (aryl ether nitrile) and phthalonitrile resin and syntheses a kind of neighbor. Crosslinked polyaryl ether terminated by benzonitrile, which can be prepared by the processing of thermoplastic material before heat treatment at high temperature, and then heat treated by high temperature to make it comparable to thermosetting resin. The relationship between the structure and properties of the crosslinked poly (aryl ether) nitrile is studied on the opening of polyaryl ether nitrile. In this paper, 2,6- two chlorobenzonitrile and dihydroxybenzene and hydroquinone are used as raw materials by molecular design. The Polyarylonitrile is synthesized by the proper overdose of dihydroxybenzene, and then the nucleophilic substitution reaction of 4- nitrophthalonitrile and hydroxyl group is used to synthesize phthalic two methonitrile. Poly aryl ether nitrile can be crosslinked with poly aryl ether nitrile, and its structure is characterized by NMR and IR. The proportion of overdose of diphenylene diphenolol has different molecular weight. Before heat treatment, the molecular weight has great influence on the thermal and mechanical properties of polyaryl ether and heat treatment. After the crosslinking reaction makes the thermal properties between the molecular weight and the molecular weight of the polyaryl ether, the gap between the mechanical properties is greatly reduced. At the same time, by changing the molar ratio of dihydroquinone and hydroquinone, the crosslinked polyaryl ether with different structures and different properties can be obtained. The results show that the polyaryl ether is increased with the increase of the ratio of hydroquinone. The crystallization ability of nitrile gradually decreased, while the crosslinking poly (aryl ether nitrile) of dihydroquinone and hydroquinone molar ratio of 83:20 had the best mechanical properties at the same time. By rheology, DSC, XRD and other testing methods, the crystallization behavior and cross-linking behavior existed in the crosslinking poly aryl ether nitrile. Therefore, the use of DSC was used in this paper. The crystallization kinetics of crosslinked poly (aryl ether nitrile) was studied by Jeziorny method. The crystallization kinetics parameters were obtained. It was deduced that the crystal of Crosslinkable Poly aryl ether nitrile showed spherical like shape. The crystal morphology was verified by polarizing microscope and scanning electron microscope. The crystallization activation energy was 152.7 KJ/mol and cross-linking was calculated by Kissinger method. The reaction activation energy is 174.8 KJ/mol. and the effect of heat treatment temperature on the crosslinking reaction and properties of poly aryl ether nitrile is studied. It is found that the crosslinking degree in polyaryl ether nitrile system increases with the increase of heat treatment temperature. At atmospheric pressure, when the heat treatment temperature reaches 320, the crosslinking reaction is more intense and the formation of the crystal is inhibited. Therefore, appropriate heat treatment temperature is an important factor in the coexistence of crystallization behavior and cross-linking behavior in polyaryl ether nitrile system. On the basis of the above study, the single component composite of Crosslinkable Poly aryl ether nitrile is prepared by hot pressing, and the influence of hot pressing temperature and hot pressing time on its properties is systematically studied. When the temperature is less than 280 degrees centigrade, the temperature is less than the temperature. When the crosslinking reaction is very slow, a large number of crystals are produced in the polyaryl ether nitrile system. The degree of crystallinity of the crosslinkable polyaronitrile composite is little changed with the increase of hot pressing temperature or hot pressing time in the temperature range of 240-280 C, but the crosslinking degree of the composite increases greatly, so the crystal passes undetermined. The crosslinking reaction of the type region was immobilized in the poly aryl ether nitrile resin, thus improving the comprehensive properties of polyaronitrile. In the single component composite, the crystal and crosslinking point acted as an enhanced phase, thus improving the mechanical properties and thermal properties of the material. Finally, the silica reinforced poly aryl ether nitrile composite was prepared by simply filling and filling the filler. Material, when the filler of nano silica is 12 wt%, the tensile strength of the composite is increased by 14% than that of the pure polyaryl ether nitrile film. The poly aryl ether nitrile /Fe_3O_4 magnetic hybrid microspheres with excellent absorbing properties are prepared by the solvent heat method. As the Fe_3O_4 magnetic hybrid microspheres have a cyanyl group in the surface mask, the poly aryl ether nitrile matrix tree can be used. A Polyarylonitrile / hybrid microsphere composite film with magnetic properties was prepared at high temperature. Finally, Polyarylonitrile /GO-CNT high dielectric composites were prepared. Under the complexation of copper ions and carboxyl groups, graphene oxide was combined with acidified carbon nanotubes into three dimensional structure, and the storage of copper ions at high temperature. At the same time, polyaryl ether nitrile occurs as a crosslinking reaction to form copper phthalocyanine, thus obtaining high dielectric constant and high strength poly aryl ether nitrile composite. In summary, high molecular weight crosslinked poly (aryl ether nitrile), a new special polymer, will have potential applications in high technology field.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O632.62
【參考文獻】
相關(guān)期刊論文 前10條
1 孫鎮(zhèn)鎮(zhèn);;高分子材料的發(fā)展歷程與趨勢[J];中國粉體工業(yè);2016年03期
2 賈慧青;楊芳;姚自余;趙家琳;;he分子質(zhì)量及分布對拉絲級聚丙烯性能影響的研究[J];石油化工應(yīng)用;2009年03期
3 章家立,何忠義;熱處理對聚芳醚腈的結(jié)晶行為及熔融的影響[J];高分子學(xué)報;2002年01期
4 曾小君,章家立,徐剛,廖維林,王生生;熱處理對剛性聚芳醚腈的結(jié)晶行為及熔融的影響[J];高分子材料科學(xué)與工程;2000年06期
5 張軍華,米軍,劉孝波;聚芳醚腈共聚物的合成與性能[J];合成化學(xué);1999年01期
6 唐安斌,羅鵬輝,朱蓉琪,蔡興賢;酚酞型聚芳醚腈砜的合成與性能研究[J];化工新型材料;1998年11期
7 廖維林,章家立,崔國娣;剛性聚芳醚腈合成與性能研究[J];高分子學(xué)報;1998年03期
8 張軍華,劉孝波,米軍,張欣苑,蔡興賢;酚酞型聚芳醚腈的合成與性能[J];塑料工業(yè);1997年06期
9 寧榮昌,宋濤;熱塑/熱固共混樹脂對復(fù)合材料抗沖擊損傷性能的影響[J];玻璃鋼/復(fù)合材料;1996年01期
10 張志毅,曾漢民;聚醚醚酮的熱交聯(lián)及其對結(jié)晶的影響[J];材料工程;1993年10期
相關(guān)博士學(xué)位論文 前2條
1 唐海龍;含羧基側(cè)基聚芳醚腈的合成及其功能復(fù)合材料研究[D];電子科技大學(xué);2015年
2 劉新才;可控交聯(lián)聚醚醚酮的分子設(shè)計與性能研究[D];吉林大學(xué);2004年
相關(guān)碩士學(xué)位論文 前1條
1 楊偉;聚芳醚腈的結(jié)晶及其性能研究[D];電子科技大學(xué);2015年
,本文編號:2045466
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/2045466.html