熒光探針法檢測藥物中氨基酸的含量及應(yīng)用
本文選題:熒光探針 + 氨基酸 ; 參考:《河南師范大學(xué)》2017年碩士論文
【摘要】:氨基酸是一組在各種生物功能中發(fā)揮重要作用的有機(jī)分子。它們不僅是構(gòu)成蛋白質(zhì)的結(jié)構(gòu)單元,而且還被認(rèn)為是調(diào)節(jié)重要生理活動(dòng)的神經(jīng)遞質(zhì),與很多生命活動(dòng)息息相關(guān)。氨基酸的定性和定量分析在醫(yī)學(xué)醫(yī)藥、臨床診斷、食品科學(xué)等科研中具有重要的意義。目前,氨基酸的檢測方法也不局限于比較老的化學(xué)法包括甲醛滴定法和凱氏定氮法、高效液相色譜法、離子交換色譜法、電化學(xué)方法、光化學(xué)分析法以及氨基酸分析儀等方法,也有許多新穎的方法被提出,例如:液相色譜與光學(xué)偶聯(lián)檢測、離子對(duì)液相色譜-串聯(lián)質(zhì)譜光譜法、親水作用色譜-串聯(lián)質(zhì)譜等眾多方法。但是上述方法大部分存在分析過程繁瑣、分析過程和時(shí)間較長、分析耗費(fèi)比較高的缺點(diǎn)。與之相對(duì)比,熒光探針法具有一系列的優(yōu)點(diǎn)例如:便于操作、較高的靈敏度、具有安全性和很強(qiáng)的復(fù)用能力等優(yōu)點(diǎn)。所以,研究建立一種低檢測限、高靈敏度的快速熒光探針法對(duì)氨基酸的測定是很有必要的。本論文主要分為以下三個(gè)方面:1.介紹了氨基酸的簡介、作用,簡單敘述了近年來氨基酸分析的常用方法,概述了熒光分析法的基本原理。2.研究了幾種對(duì)氨基酸定量檢測的熒光探針法:(1)在pH=8.8的CL緩沖溶液和表面活性劑SDS中,Cu~(2+)能和桑色素發(fā)生反應(yīng)形成一個(gè)絡(luò)合物,從而使桑色素的熒光猝滅,再加入一定量的賴氨酸后,Cu~(2+)能和賴氨酸形成一個(gè)更為穩(wěn)定的絡(luò)合物,從而解離出來桑色素時(shí)體系的ΔF增加且增加量與賴氨酸的濃度在一定范圍內(nèi)具有線性關(guān)系。因此,我們建立了一種熒光探針法定量檢測賴氨酸的方法。在激發(fā)狹縫寬度為為5nm,發(fā)射狹縫寬度為為5nm時(shí),線性回歸方程為:F=98.75+49.93C(mg/L),相關(guān)系數(shù)R為0.9997,線性范圍為1.0~5.0mg/L,檢出限為0.0057mg/L。(2)在pH=10.8的Sφrensen緩沖溶液和表面活性劑OP水溶液的存在下,Ni~(2+)能和鈣黃綠素形成一個(gè)絡(luò)合物從而使鈣黃綠素的熒光猝滅,當(dāng)再加入一定量的天冬氨酸后,天冬氨酸能使猝滅后的Ni~(2+)-鈣黃綠素的熒光增加,而且增加量與天冬氨酸的濃度在一定范圍內(nèi)成正比。所以,我們建立了一種檢測天冬氨酸的熒光探針法。在激發(fā)狹縫的寬度為3nm,發(fā)射狹縫的寬度為5nm的條件下,線性回歸方程為:F=88.47+8.497C(mg/L),相關(guān)系數(shù)為R=0.9981,線性范圍為1~40mg/L,檢出限為0.0050mg/L。(3)在pH為9.6的Clark-Lubs緩沖溶液和表面活性劑SDS中,激發(fā)狹縫寬度為3nm,發(fā)射狹縫寬度為5nm時(shí),不同濃度的半胱氨酸能使猝滅的Pb~(2+)-水楊基熒光酮體系的熒光不斷變大且在一定范圍內(nèi)呈現(xiàn)良好的線性,線性回歸方程為:F=52.03+173.2C(mg/L),相關(guān)系數(shù)為0.9986,線性范圍為0.5~5.0mg/L,檢出限為0.00086mg/L。3.我們通過研究體系的熒光強(qiáng)度和氨基酸、金屬離子的含量之間的關(guān)系,探究了熒光探針與金屬離子、氨基酸之間發(fā)生作用的反應(yīng)機(jī)理和絡(luò)合比,并進(jìn)行了初步的探討。
[Abstract]:Amino acids are a group of organic molecules that play an important role in various biological functions. They are not only the structural units of proteins, but also considered to be neurotransmitters regulating important physiological activities, which are closely related to many life activities. The qualitative and quantitative analysis of amino acids is of great significance in medical medicine, clinical diagnosis, food science and other scientific research. At present, the determination of amino acids is not limited to the older chemical methods, including formaldehyde titration and Kjeldahl nitrogen determination, high performance liquid chromatography, ion exchange chromatography, electrochemical methods, photochemical analysis and amino acid analyser, etc. Many novel methods have been proposed, such as liquid chromatography coupled with optical detection, ion-pair liquid chromatography-tandem mass spectrometry, hydrophilic interaction chromatography-tandem mass spectrometry and so on. However, most of the above methods have the disadvantages of complicated analysis process, long analysis process and time, and high analysis cost. By contrast, the fluorescence probe method has a series of advantages, such as easy to operate, high sensitivity, safety and strong reuse ability. Therefore, it is necessary to establish a rapid fluorescence probe method with low detection limit and high sensitivity for the determination of amino acids. This paper is divided into the following three aspects: 1. This paper introduces the brief introduction and function of amino acids, briefly describes the common methods of amino acid analysis in recent years, and summarizes the basic principle of fluorescence analysis. The fluorescence probe method for quantitative determination of amino acids: 1) in the CL buffer solution of pH=8.8 and surfactant SDS) can react with Morin to form a complex, which can quench the fluorescence of Morin. After adding a certain amount of lysine, the CuCuP2) can form a more stable complex with lysine, thus the 螖 F of the system increases when the mulberry pigment is dissociated, and the increase has a linear relationship with the concentration of lysine in a certain range. Therefore, we established a fluorescence probe method for quantitative determination of lysine. When the excitation slit width is 5 nm and the emission slit width is 5nm, The linear regression equation is: FG 98.7549.93Cg / L, the correlation coefficient R is 0.9997, the linear range is 1.0 ~ 5.0mg / L, the detection limit is 0.0057mg / L ~ (2) in the presence of S 蠁 rensen buffer solution of pH=10.8 and surfactant op aqueous solution, NiNi2) can form a complex with calcium xanthophyllin, which can quench the fluorescence of calcitonin. After adding aspartic acid, the fluorescence of quenched Ni~(2 can be increased, and the increase is proportional to the concentration of aspartic acid in a certain range. Therefore, we developed a fluorescence probe method for the detection of aspartic acid. Under the conditions that the width of the excited slit is 3 nm and the width of the emission slit is 5nm, the linear regression equation is: F88.47 8.497Cng / L, the correlation coefficient is 0.9981, the linear range is 1 ~ (40) mg / L, the detection limit is 0.0050 mg / L ~ (-3) in Clark-Lubs buffer solution and surfactant SDS with pH 9.6, the linear range is 0.9981, and the detection limit is 0.0050 mg / L ~ (-1). When the excitation slit width is 3 nm and the emission slit width is 5nm, different concentrations of cysteine can increase the fluorescence of quenched Pb~(2 / salicylidene fluorone system and show good linearity in a certain range. The linear regression equation is 52.03 173.2Cu mg / L, the correlation coefficient is 0.9986, the linear range is 0.5 ~ 5.0 mg / L, the detection limit is 0.00086 mg / L ~ (-3). By studying the relationship between fluorescence intensity, amino acid content and metal ion content, the reaction mechanism and complexation ratio between fluorescence probe and metal ion and amino acid were studied.
【學(xué)位授予單位】:河南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O657.3;TQ460.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高超穎;張麗;楊楊;段莉梅;烏蘭格日樂;;羅丹明水楊酰腙-銅絡(luò)合物探針在半胱氨酸檢測中的應(yīng)用[J];石油化工;2016年11期
2 侯捷;雷雯;杜曉寧;任征;岳韓笑;;氣相色譜-質(zhì)譜聯(lián)用法分析~(15)N標(biāo)記精氨酸發(fā)酵液中的氨基酸組分及其同位素豐度[J];分析測試學(xué)報(bào);2016年09期
3 廖小晴;王會(huì)影;李在均;;過氧化氫與L-半胱氨酸對(duì)BSA-Cu體系熒光“開-關(guān)”響應(yīng)及分析應(yīng)用[J];分析化學(xué);2015年12期
4 林太鳳;趙夢(mèng)柯;王妍鳴;李想;宋梓慧;王惠琴;鄭大威;;氨基酸檢測技術(shù)研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2015年18期
5 王芳;喬璐;張慶慶;沈斌;;桑葉蛋白氨基酸組成分析及營養(yǎng)價(jià)值評(píng)價(jià)[J];食品科學(xué);2015年01期
6 徐三能;張靜;;HPLC法測定門冬氨酸鉀鎂注射液中門冬氨酸的含量[J];安徽醫(yī)藥;2014年08期
7 王國安;陳慧萍;;氨基酸結(jié)晶與提純工藝的探討[J];生物技術(shù)世界;2014年03期
8 廖英杰;劉波;任鳴春;崔紅紅;謝駿;戈賢平;;賴氨酸對(duì)團(tuán)頭魴幼魚生長、血清生化及游離必需氨基酸的影響[J];水產(chǎn)學(xué)報(bào);2013年11期
9 陳萍紅;王書芳;田守生;龔行楚;張淹;;柱前衍生RP-HPLC法測定阿膠中13種氨基酸[J];中草藥;2013年14期
10 暴海霞;戴新華;;氨基酸檢測方法的進(jìn)展和現(xiàn)狀[J];化學(xué)試劑;2013年07期
相關(guān)碩士學(xué)位論文 前2條
1 吳麗萍;一步電沉積法制備納米金—水滑石修飾電極及其對(duì)半胱氨酸的檢測應(yīng)用研究[D];北京理工大學(xué);2015年
2 黃斐斐;半胱氨酸的電化學(xué)檢測方法研究[D];大連理工大學(xué);2013年
,本文編號(hào):1861255
本文鏈接:http://www.sikaile.net/kejilunwen/huaxue/1861255.html