合流制管網(wǎng)污水溢流污染特征及其控制技術(shù)研究
[Abstract]:In this study, the combined pipe network in Changzhou, southern Jiangsu province, was sampled and analyzed in the rainy days and its related daily sewage, runoff Rain Water and pipeline sediment, etc. The characteristics of wastewater quality and pollution load operation of combined flow (CSO) for sewage overflow are discussed. The suspended fast filter for rapid treatment of CSO at the end of pipe network is designed. The monitoring and analysis of the water quality of the combined sewage overflow shows that the pollutant concentration in the effluents is high and varies greatly. In the monitored overflow events, the EMC values of the COD,TN,TP,NH3-N and SS concentrations are 33 ~ 649 mg / L ~ (60) mg 路L ~ (-1) and 30 mg 路L ~ (-1), respectively. 0.182.09mg / L 322mg / L and 23336mg / L, the water quality is inferior to the class V water quality standard (GB 3838-2002). The effects of rainfall types on pollutants in overflow sewage are different. The effects of heavy rainfall on COD and SS are significant, and the characteristics of water quality show obvious polarization, while the influence of small intensity rainfall on NH3-N is more obvious. The moderate intensity rainfall is continuously affected by the scour effect, which causes the pollutant concentration to be in the middle or higher level. The flood water quality will also be affected during the drought period, and the pollution will be serious during the long drought period due to the accumulation of pollutants. According to the analysis of the pollution load in the combined flow pipeline, the sediment in the pipeline is the most important pollutant source in CSO, and the contribution to COD,TN,TP,NH3-N,SS is about 53% and the proportion of the contribution to the COD,TN,TP,NH3-N,SS is about 53%, 68%, 43%, 56%, 42%, and 62%, respectively. 23 / 46% and 57 / 67; Second was Rain Water, who contributed 17% of the total amount of runoff, and 33% of the total amount of water, including 10%, 10% and 26% of the total, including 1130%, 18% and 36% of the total. The daily sewage is relatively small, and the contribution ratio is 9, respectively. The contribution ratio of different pollution sources is affected by rainfall intensity. The contribution ratio of different underlying surfaces in runoff Rain Water is also different. Road runoff is the main source of runoff pollutants, roof is the second, courtyard is the smallest. The critical rainfall intensity of the pump station can be obtained by converting the capacity of intercepting pollution into the equivalent of rainfall intensity and considering the multiple of closure, which can be used to judge whether the pumping station overflows in a single rainfall. The analysis of MV curve of overflow sewage shows that the combined flow system exhibits different scour phenomena under different rainfall intensity, and no scour effect in small intensity, medium intensity and large intensity rainfall events. Initial scour effect and intermediate scour effect. In this paper, a suspension fast filtration device for CSO terminal treatment is designed. The device is mainly used to remove SS and related pollutants from wastewater by physical interception and adsorption. The experimental results show that the average removal rate of SS can reach more than 45% at high filtration rate. The results show that when the particle size exceeds 90 渭 m, the removal rate can reach more than 50%, and when the particle size exceeds 150 渭 m, the removal efficiency can reach 100%.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳春篤;張貝貝;任雁;張波;;鎮(zhèn)江市合流制管網(wǎng)溢流污染源解析[J];環(huán)境科學(xué)與技術(shù);2011年10期
2 唐磊;車伍;趙楊;;基于低影響開發(fā)的合流制溢流污染控制策略研究[J];給水排水;2013年08期
3 唐磊;車伍;趙楊;宮永偉;;合流制溢流污染控制系統(tǒng)決策[J];給水排水;2012年07期
4 邢麗貞;王恩革;常青霞;;合流制污水溢流治理技術(shù)綜述[J];山東建筑大學(xué)學(xué)報(bào);2011年02期
5 何慶慈,李立青,孔玲莉,尹澄清;武漢市漢陽(yáng)區(qū)的暴雨徑流污染特征[J];中國(guó)給水排水;2005年02期
6 侯帥華;賈寶秋;;老城區(qū)排水系統(tǒng)改造新模式[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年02期
7 鹿海峰;華蕾;王浩正;欒曉佳;陳維;;城市合流制管網(wǎng)降雨徑流污染特征分析[J];中國(guó)環(huán)境監(jiān)測(cè);2012年06期
8 陳本劭;;合流制污水系統(tǒng)拍門利用液壓鎖扣裝置控制啟閉的研究[J];中華民居(下旬刊);2013年11期
9 李田;戴梅紅;張偉;錢立鵬;;水泵強(qiáng)制排水系統(tǒng)合流制溢流的污染源解析[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年10期
10 陳威;徐明明;;河道內(nèi)合流制截污干管的設(shè)計(jì)[J];工程建設(shè);2012年03期
相關(guān)會(huì)議論文 前3條
1 楊根權(quán);;淺談舊合流制排水管渠系統(tǒng)的改造[A];第四屆全國(guó)給水排水青年學(xué)術(shù)年會(huì)論文集[C];2000年
2 馮生華;;新建地區(qū)的排水系統(tǒng)應(yīng)因地制宜采用分流制或合流制[A];中國(guó)土木工程學(xué)會(huì)水工業(yè)分會(huì)第四屆理事會(huì)第一次會(huì)議論文集[C];2002年
3 張先立;劉杏;;采用薄壁孔口控制污水截流井設(shè)計(jì)流量[A];西南六省、區(qū)、市七方土木建筑工程學(xué)會(huì)第二十四次學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 ;深隧建設(shè)或可破解內(nèi)澇難題[N];建筑時(shí)報(bào);2013年
2 姬躍國(guó) 王召東 尹衛(wèi)紅(作者單位:河南省城鄉(xiāng)規(guī)劃設(shè)計(jì)研究院);加強(qiáng)雨水處理十分必要[N];中國(guó)建設(shè)報(bào);2002年
相關(guān)博士學(xué)位論文 前1條
1 陳勇民;承壓式合流制溢流深井淤積及清淤技術(shù)研究[D];浙江大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 李思遠(yuǎn);合流制管網(wǎng)污水溢流污染特征及其控制技術(shù)研究[D];清華大學(xué);2015年
2 唐磊;合流制改造及溢流污染控制技術(shù)與策略研究[D];北京建筑大學(xué);2013年
3 耿立馨;合流制管道沉積物沖刷模型試驗(yàn)研究[D];武漢理工大學(xué);2013年
4 潘科;改良式合流制在中小城鎮(zhèn)的應(yīng)用研究[D];西南交通大學(xué);2005年
5 崔爽;合流制管道沉積物中氮和有機(jī)物污染特性研究[D];北京建筑大學(xué);2014年
6 徐一茗;基于SWMM的巢湖市老城區(qū)合流制管道溢流污染的模擬研究[D];安徽建筑工業(yè)學(xué)院;2011年
7 高潮;SD模型在合流制排水管網(wǎng)溢流污染控制中的應(yīng)用研究[D];西南交通大學(xué);2014年
8 郭海泉;西安市截流干管水質(zhì)水量變化規(guī)律與解析[D];西安建筑科技大學(xué);2014年
,本文編號(hào):2406367
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/2406367.html