磁性沸石去除水中磷的性能和機理研究
本文選題:改性磁性沸石 + 磷; 參考:《合肥工業(yè)大學》2016年碩士論文
【摘要】:近年來,水體富營養(yǎng)化問題日趨嚴峻,成為亟待解決的環(huán)境問題之一。磷作為水體富營養(yǎng)化的限制性因子,對其含量控制尤為重要。吸附是一種去除水中磷的常用方法。本文以廉價天然沸石為吸附劑,通過有機改性和無機改性改善其吸附性能,同時,考慮吸附劑的回收再利用問題,制備有機磁性沸石和無機磁性沸石,并對磁性沸石的結(jié)構(gòu)特性進行研究。通過有機磁性沸石和無機磁性沸石對磷的靜態(tài)吸附和動態(tài)吸附實驗,探討其吸附磷的主要影響因素和吸附機理。首先,通過溶液浸漬法制備有機磁性沸石和無機磁性沸石,采用物理吸附儀(BET)、X射線衍射分析儀(XRD)、場發(fā)射掃描電鏡(SEM)、傅里葉紅外光譜儀(FT-IR)、X射線能譜儀(XPS)和電子順磁共振波譜儀(EPR)對磁性沸石進行表征。結(jié)果表明,有機磁性沸石和無機磁性沸石均具有較高的比表面積,其比表面積大。篗n-Zr-Fe磁性沸石Mn-Fe磁性沸石Zr-Fe磁性沸石PMA-Fe-Al磁性沸石TMA-Fe-Al磁性沸石BA-Fe-Al磁性沸石。有機磁性沸石和無機磁性沸石均具有較強的磁性,其中BA-Fe-Al、TMA-Fe-Al、PMA-Fe-Al、Zr-Fe、Mn-Fe和Mn-Zr-Fe磁性沸石的飽和磁化強度分別為31.9、26.2、24.8、29.9、18.6、22.4 emu/g。另外,天然沸石、BA-Fe-Al、TMA-Fe-Al、PMA-Fe-Al、Zr-Fe、Mn-Fe和Mn-Zr-Fe磁性沸石的零電荷點(pHzpc)分別為5.3、5.2、5.4、4.5、4.1、5.9、4.3。其次,采用有機磁性沸石和無機磁性沸石吸附磷,考察其對磷的吸附特性。結(jié)果表明,偽二級動力學模型和Langmuir等溫模型更加適合描述有機磁性沸石和無機磁性沸石對磷的吸附過程。在308 K,磷初始濃度為35 mg/L時,BA-Fe-Al、 TMA-Fe-Al、PMA-Fe-Al、Mn-Fe、Zr-Fe和Mn-Zr-Fe磁性沸石對磷的平衡吸附量分別為6.8、7.1、9.7、11.8、8.8和20.9 mg/g。隨著溫度的升高,有機磁性沸石和無機磁性沸石對磷的吸附量隨之增加。酸性環(huán)境有利于有機磁性沸石和無機磁性沸石吸附磷,堿性環(huán)境會削弱其對磷的吸附效果。BA-Fe-Al、TMA-Fe-Al、 PMA-Fe-Al、Mn-Fe、Zr-Fe和Mn-Zr-Fe磁性沸石吸附磷的最佳投加量分別為2.5、1.0、1.0、1.0、1.0、1.0 g/L。隨著共存離子的濃度增加,有機磁性沸石和無機磁性沸石對磷的吸附量隨之減少,其中Cl-對有機磁性沸石和無機磁性沸石吸附磷的影響最小,HCO3-對有機磁性沸石和無機磁性沸石吸附磷的影響最大。最后,對有機磁性沸石和無機磁性沸石的再生性能和動態(tài)吸附實驗進行考察。結(jié)果表明,有機磁性沸石和無機磁性沸石具有較好的再生能力,并且可以多次循環(huán)利用。BA-Fe-Al、TMA-Fe-Al、PMA-Fe-Al、Mn-Fe、Zr-Fe和Mn-Zr-Fe磁性沸石經(jīng)過六次吸附-脫附循環(huán)后,仍為第一次平衡吸附量的64.8%、75.1%、77.4%、66.7%、64.2%和76.8%。當進水磷濃度增大,有機磁性沸石和無機磁性沸石穿透點出現(xiàn)時所對應的有效處理體積隨之減少。
[Abstract]:In recent years, eutrophication has become one of the most urgent environmental problems. Phosphorus, as a limiting factor of eutrophication, is very important to its content control. Adsorption is a common method for removing phosphorus from water. In this paper, cheap natural zeolites were used as adsorbents to improve their adsorption properties through organic modification and inorganic modification. At the same time, organic magnetic zeolites and inorganic magnetic zeolites were prepared by considering the problem of recovery and reuse of adsorbents. The structure characteristics of magnetic zeolite were studied. Through the static and dynamic adsorption experiments of phosphorus by organic magnetic zeolite and inorganic magnetic zeolite, the main influencing factors and adsorption mechanism of phosphorus adsorption were discussed. Firstly, organic magnetic zeolite and inorganic magnetic zeolite were prepared by solution impregnation. The magnetic zeolites were characterized by physical absorption spectrometer BETX X ray diffraction analyzer, field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). The results show that both organic and inorganic magnetic zeolites have high specific surface area, the specific surface area of which is: Mn-Zr-Fe magnetic zeolite, Mn-Fe magnetic zeolite, Zr-Fe magnetic zeolite, PMA-Fe-Al magnetic zeolite, TMA-Fe-Al magnetic zeolite, BA-Fe-Al magnetic zeolite. Both organic and inorganic magnetic zeolites have strong magnetic properties, and the saturation magnetization of BA-Fe-Fe-AlMA-Fe-AlPMA-Fe-Zr-FeMn-Fe and Mn-Zr-Fe magnetic zeolites are 31.926.2 (24.829.9) and 18.6mu / g, respectively. In addition, the zero charge point of the natural zeolite BA-Fe-AlN TMA-Fe-Aln-PMA-Fe-Al-Zr-FeMn-Fe and Mn-Zr-Fe magnetic zeolites are 5.3V 5.44.5N 4.1L 5.9cu 4.3respectively. Secondly, organic magnetic zeolite and inorganic magnetic zeolite were used to adsorb phosphorus. The results show that the pseudo-second-order kinetic model and the Langmuir isothermal model are more suitable to describe the adsorption process of phosphorus on organic and inorganic magnetic zeolites. At 308K and initial phosphorus concentration of 35 mg/L, the equilibrium adsorption capacities of BA-Fe-Al, TMA-Fe-AlPMA-Fe-PMA-FeMn-FeOZr-Fe and Mn-Zr-Fe magnetic zeolites for phosphorus were 6.87.1C9.7C 11.88.8 and 20.9 mg / g, respectively. With the increase of temperature, the amount of phosphorus adsorbed by organic magnetic zeolite and inorganic magnetic zeolite increased. Acidic environment is favorable to the adsorption of phosphorus by organic magnetic zeolite and inorganic magnetic zeolite, while alkaline environment will weaken the adsorption effect of phosphorus. The optimum dosages of PMA-Fe-Al Mn-FeZr-Fe and Mn-Zr-Fe magnetic zeolites for phosphorus adsorption are 2.5g / L, 1.0g / L, 1.0g / L and 1.0g / L, respectively, for PMA-Fe-AlN TMA-Fe-Al, PMA-Fe-AlnFeZr-Fe and Mn-Zr-Fe magnetic zeolites. With the concentration of coexisting ions increasing, the amount of phosphorus adsorbed by organic magnetic zeolite and inorganic magnetic zeolite decreased. The effect of Cl- on the adsorption of phosphorus on organomagnetic zeolite and inorganic magnetic zeolite is the least. HCO3- has the greatest effect on the adsorption of phosphorus on organomagnetic zeolite and inorganic magnetic zeolite. Finally, the regeneration performance and dynamic adsorption of organic magnetic zeolite and inorganic magnetic zeolite were investigated. The results show that the organic magnetic zeolite and the inorganic magnetic zeolite have good regeneration ability, and can be reused for several times. After six adsorption-desorption cycles, the organic magnetic zeolite and the inorganic magnetic zeolite are still 64.85.177.47.47.46.76.77.76.74.2% and 76.882% of the first equilibrium adsorptive capacity after six adsorption-desorption cycles. The results show that the organic magnetic zeolite and the inorganic magnetic zeolite have good regeneration ability and can be reused for several times. The results show that the organic magnetic zeolites and the inorganic magnetic zeolites are still 64.2% and 76.882% respectively after six adsorption-desorption cycles. The effective treatment volume of organic magnetic zeolite and inorganic magnetic zeolite decreased with the increase of phosphorus concentration in the influent.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:X52
【參考文獻】
相關期刊論文 前10條
1 王振;張彬彬;向衡;樊霆;杜宇能;李定心;;垂直潛流人工濕地堵塞及其運行效果影響研究[J];中國環(huán)境科學;2015年08期
2 崔揚;朱廣偉;張運林;朱夢圓;許海;施坤;李未;秦伯強;;湖庫富營養(yǎng)化指標的高頻監(jiān)測方法研究[J];環(huán)境科學學報;2014年05期
3 Zhengfang Wang;Mo Shi;Jihua Li;Zheng Zheng;;Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J];Journal of Environmental Sciences;2014年03期
4 張鑫;尹仁畢;趙忠孝;;硝酸活化活性炭吸附水中阿莫西林的研究[J];環(huán)境工程技術學報;2013年05期
5 宗恩敏;魏丹;還中科;彭渡;萬海勤;鄭壽榮;許昭怡;;磷在氧化鋯-碳納米管復合材料上的吸附研究[J];無機化學學報;2013年05期
6 吳亞男;吳秋玨;周巖民;王恬;;天然及甲酸改性沸石對沙門氏菌K_(533)吸附作用的影響[J];中國環(huán)境科學;2012年08期
7 曾龍云;楊春平;郭俊元;羅勝聯(lián);;間歇曝氣生物濾池生物除磷性能研究[J];環(huán)境科學;2012年01期
8 劉志剛;虞靜靜;李軼;顏孜佳;許斌;;城市污水處理廠磷的形態(tài)變化規(guī)律研究[J];給水排水;2011年02期
9 劉寶河;張林生;孟冠華;鄭俊;;TBX多孔陶粒濾料制備及廢水吸附除磷試驗研究[J];北京大學學報(自然科學版);2010年03期
10 劉波;陳玉成;王莉瑋;何娟;劉江國;梁勤爽;;4種人工濕地填料對磷的吸附特性分析[J];環(huán)境工程學報;2010年01期
,本文編號:1865821
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/1865821.html