錦江天府新區(qū)直管段水環(huán)境問題研究
本文選題:錦江成都天府新區(qū)直管區(qū)段 切入點(diǎn):污染源調(diào)查 出處:《西南交通大學(xué)》2016年碩士論文
【摘要】:本論文以錦江成都天府新區(qū)直管區(qū)段流域?yàn)檠芯繉?duì)象,以污染源實(shí)地調(diào)查、4個(gè)重點(diǎn)流域斷面年、月、日間動(dòng)態(tài)監(jiān)測(cè)及斷面通量加密監(jiān)測(cè)為研究基礎(chǔ),以相關(guān)環(huán)境監(jiān)測(cè)部門近年水質(zhì)監(jiān)測(cè)數(shù)據(jù)為研究補(bǔ)充,以水質(zhì)分析為研究重點(diǎn),以“摸清情況,查找差距,發(fā)現(xiàn)問題,找準(zhǔn)根源”為研究思路,以實(shí)現(xiàn)與社會(huì)發(fā)展水平相適應(yīng)的水環(huán)境質(zhì)量目標(biāo)為研究目的,提高治污減排的精準(zhǔn)性和質(zhì)量改善的針對(duì)性,為水環(huán)境改善提供依據(jù)。主要研究方法包括第一,結(jié)合秩相關(guān)系數(shù)法對(duì)水質(zhì)經(jīng)行了定量及定性的水質(zhì)時(shí)序。第二,在分析4個(gè)重點(diǎn)監(jiān)測(cè)斷面的基礎(chǔ)上,使用描述集中趨勢(shì)指標(biāo)和描述離散程度的指標(biāo),定性分析4個(gè)重點(diǎn)斷面的污染物斷面通量;再根據(jù)斷面通量負(fù)荷結(jié)構(gòu),定量的對(duì)斷面最大負(fù)荷允許限值及達(dá)標(biāo)削減量進(jìn)行分析。第三,采用灰度關(guān)聯(lián)法對(duì)4個(gè)重點(diǎn)斷面進(jìn)行分析,從而篩選出各個(gè)斷面的主要污染物。通過分析主要得到結(jié)論為:1)通過水質(zhì)時(shí)序分析可知:錦江永安大橋、錦江正公路橋、錦江黃龍溪、江安河二江寺4個(gè)斷面中,江安河二江寺斷面錳酸鹽指數(shù)、CODcr、石油類3項(xiàng)污染指標(biāo),錦江黃龍溪斷面總磷1項(xiàng)污染指標(biāo),錦江永安大橋斷面陰離子表面活性劑1項(xiàng)染指標(biāo)下降變化趨勢(shì)有顯著意義,水質(zhì)污染有所好轉(zhuǎn)趨勢(shì)是可信的。而4個(gè)斷面其余污染因子在評(píng)價(jià)時(shí)段內(nèi)下降或上升趨勢(shì)屬隨機(jī)的,水質(zhì)變化屬穩(wěn)定或平穩(wěn),沒有明顯的趨勢(shì)變化。2)通過斷面通量分析可知:對(duì)錦江觀音灣大橋、江安河二江寺、錦江正公路橋、錦江永安橋4個(gè)斷面的污染物通量分析綜合分析,通過主要污染物達(dá)標(biāo)情景需要消減的通量模擬,最大月削減通量均出現(xiàn)在6月,氨氮和總磷最大月削減通量出現(xiàn)在1月、5月、6月,其中錦江正公路橋最大月削減通量出現(xiàn)在1月,表明就氨氮而言該斷面有明顯的點(diǎn)污染源貢獻(xiàn)特征。其余斷面和污染物出現(xiàn)在5月、6月,5、6月為前平水期后期、豐水期前期,常是流域1年中第一場(chǎng)大雨出現(xiàn)時(shí)期,表明面源污染影響很大。3)通過灰度關(guān)聯(lián)分析可知:對(duì)于氨氮而言,錦江成都天府新區(qū)直管區(qū)段有明顯氨氮污染輸入,且對(duì)出境斷面水質(zhì)造成影響,其污染源不排除區(qū)段內(nèi)集中式污水處理廠尾水排放,洗瓦堰支流污染輸入;對(duì)于高錳酸鹽指數(shù)指數(shù)而言,錦江永安橋高錳酸鹽指數(shù)濃度受江安河和錦江中心城區(qū)段輸入影響強(qiáng)度較大,影響程度接近,錦江成都天府新區(qū)直管區(qū)段內(nèi)影響較;對(duì)于總磷而言,錦江天府成都直管區(qū)段總磷輸入影響錦江永安橋總磷水質(zhì)濃度作用明顯,錦江觀音灣大橋、錦江正公路橋關(guān)聯(lián)度強(qiáng)度接近,江安河對(duì)錦江永安橋總磷濃度影響較小?偭兹究刂浦攸c(diǎn)為錦江干流中心城區(qū)污染輸入和成都直管區(qū)錦江區(qū)段內(nèi)污染輸入。
[Abstract]:This paper takes the river basin of Tianfu New area of Jinjiang River as the research object, taking the field investigation of pollution sources, the dynamic monitoring of four key watershed sections during the year, month and day and the flux density monitoring of the section as the basis of the research. Taking the water quality monitoring data of relevant environmental monitoring departments in recent years as a supplement, taking water quality analysis as the research focus, and "finding out the situation, finding out the gap, finding out the problems and finding out the root causes" as the research train of thought, In order to achieve the goal of water environment quality corresponding to the level of social development, to improve the precision of pollution abatement and the pertinence of quality improvement, the main research methods include: first, Combined with rank correlation coefficient method, the quantitative and qualitative water quality time series are obtained. Secondly, on the basis of analyzing the four key monitoring sections, we use the indicators to describe the concentration trend and the degree of dispersion. Qualitative analysis of the pollutant cross-section flux of four key sections, and then according to the cross-section flux load structure, quantitative analysis of the maximum section load allowable limit and standard reduction. Third, The four key sections were analyzed by gray correlation method, and the main pollutants of each section were screened out. The main conclusion is: Jinjiang Yongan Bridge, Jinjiang normal Highway Bridge, through the analysis of water quality time series, the main conclusions are: Jinjiang Yongan Bridge, Jinjiang River Road Bridge, Among the four sections of Huanglongxi and Erjiangsi in Jinjiang River, the manganese salt index of Erjiangsi section of Jiangan River is CODcr, petroleum pollution index is 3, total phosphorus of Huanglongxi section is one pollution index. The decreasing trend of anionic surfactant in the section of Yongan Bridge is significant, the trend of water pollution improvement is credible, while the other pollution factors of four sections are random in the evaluation period. The change of water quality is stable or steady, and there is no obvious trend change. 2) through the analysis of cross-section flux, we can know that the pollutant fluxes of the four sections of Guanyin Bay Bridge, Erjiangsi, Jinjiang Road Bridge and Yongan Bridge of Jinjiang are analyzed synthetically. The maximum monthly reduction fluxes occurred in June, ammonia nitrogen and total phosphorus decreased fluxes occurred in January, May, June, respectively. The maximum monthly reduction flux of Jinjiang Highway Bridge occurred in January, which indicated that the section had obvious contribution characteristics of point pollution sources in terms of ammonia nitrogen. The other sections and pollutants appeared in May, June and June respectively. It is usually the first time of heavy rain in a river basin in one year, indicating that non-point source pollution has a great influence on it. 3) through gray correlation analysis, we can know that for ammonia nitrogen, the direct section of Tianfu New area of Jinjiang River has obvious input of ammonia nitrogen pollution. The source of pollution does not exclude the tail water discharge from the centralized sewage treatment plant in the section and the pollution input from the flat-washing Weir tributary; for the permanganate index index, the water quality of the exit section is affected. The concentration of permanganate index of Yongan Bridge in Jinjiang River is influenced by the input intensity of Jiangan River and the central section of Jinjiang River, and the influence degree is close. The effect of total phosphorus input on the total phosphorus concentration of Yongan Bridge in Jinjiang Tianfu is obvious. The correlation intensity of Guanyin Bay Bridge and Jinjiang Highway Bridge is close to that of Jinjiang Yongan Bridge. The effect of river on the total phosphorus concentration of Yongan Bridge of Jinjiang River is relatively small. The key points of total phosphorus pollution control are the pollution input in the central urban area of the main stream of Jinjiang River and the pollution input in the section of Jinjiang District in the Chengdu Direct Control area.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:X52
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 ;西部美麗盛會(huì) 十年輝煌慶典——第十六屆成都美容美發(fā)節(jié)隆重舉行[J];中國化妝品;2006年07期
2 袁仕海;;吉隆坡散記[J];四川烹飪;2007年12期
3 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 程嘉;楊瀟;王小維;馬龍;劉肅;;基于躍移式CBD理論及產(chǎn)業(yè)分析的實(shí)證發(fā)展研究——以成都天府新城為例[A];規(guī)劃創(chuàng)新:2010中國城市規(guī)劃年會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 王玉華 薛學(xué)軒 楊心怡;成都天府新區(qū)專項(xiàng)規(guī)劃工作全面推進(jìn)[N];中國建設(shè)報(bào);2013年
2 實(shí)習(xí)生 何康 記者 朱會(huì)倫;成都天府新城百億項(xiàng)目開工[N];科技日?qǐng)?bào);2009年
3 記者 鐘文;成都天府新區(qū)上半年20個(gè)項(xiàng)目竣工投產(chǎn)[N];成都日?qǐng)?bào);2012年
4 記者 繆琴;“探營”成都軟件業(yè) 歐洲巨頭直飛蓉城[N];成都日?qǐng)?bào);2010年
5 本報(bào)記者 李建軍 實(shí)習(xí)生 李楠;成都天府新區(qū)吸金153億[N];中國房地產(chǎn)報(bào);2011年
6 記者 方小虎;四川省成都天府新區(qū)建設(shè)正式啟動(dòng)[N];四川日?qǐng)?bào);2011年
7 本報(bào)記者 韓清華;總投資355億元成都天府新區(qū)八大項(xiàng)目同步開工[N];中國經(jīng)濟(jì)時(shí)報(bào);2012年
8 本報(bào)記者 靳軍 白樺;成都天府新區(qū)八項(xiàng)目同步啟動(dòng)[N];中國證券報(bào);2011年
9 宋躍;成都天府新城百億元項(xiàng)目開工[N];中國電子報(bào);2009年
10 記者 韓清華 葉舟 周宇彥 包羽;成都天府新區(qū)西博會(huì)吸金153億元[N];中國經(jīng)濟(jì)時(shí)報(bào);2011年
相關(guān)碩士學(xué)位論文 前2條
1 楊釘;錦江天府新區(qū)直管段水環(huán)境問題研究[D];西南交通大學(xué);2016年
2 邢宇;基于“反規(guī)劃”方法下的成都天府新區(qū)綠色空間體系構(gòu)建[D];四川農(nóng)業(yè)大學(xué);2013年
,本文編號(hào):1661402
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/1661402.html