內蒙某高溫高酸鋅浸出冶煉渣中綜合回收銀的研究
本文關鍵詞: 高溫高酸鋅浸出渣 渣物質組成 快速浮選 六偏磷酸鈉 分散機理 出處:《江西理工大學》2015年碩士論文 論文類型:學位論文
【摘要】:目前,從濕法冶煉渣中回收銀已經成為銀生產的一條重要途徑。常規(guī)法鋅浸出渣中的銀基本可以通過浮選法得到有效回收,并實現(xiàn)了工業(yè)化生產。隨著濕法煉鋅的技術發(fā)展,高溫高酸浸出法大大提高了鋅的浸出率和其他有價金屬的浸出率,但銀卻進一步的富集在渣中而沒有得到回收。本次試樣取自內蒙某公司鋅冶煉廠,該廠采用高溫高酸工藝浸出鋅,試樣為鋅浸出渣。本文對該浸出渣的物質組成做了詳細的研究。該浸出渣中可溶性物質主要為水鋅礬,不可溶性物質主要是水鐵礬Fe[SO4]?H2O,其次為硅膠體和含鋅(鉛)氧化鐵,并殘余一些礦物碎屑(赤鐵礦、鋅鐵尖晶石、長石、石英等)。該浸出渣含銀240g/t左右(除去渣中40.96%水溶物后含銀400g/t左右)。利用MLA進行礦物自動檢測系統(tǒng)及礦物多元素能譜分析可知,該浸出渣中主要的銀礦物有氯角銀礦、螺狀硫化銀礦、硫銅銀礦,其他銀呈零星點狀分布于浸出渣中一些礦物的表面,其中部分存在于黝銅礦、銅藍、黃銅礦等銅礦物和閃鋅礦、鉛硬錳礦表面,含鋅氧化鐵、硅膠等氧化礦或是硅酸鹽礦物表面也分布著微細粒銀。銀主要與錳礦物、銅礦物和閃鋅礦相關。根據(jù)浸出渣的物質組成及銀賦存狀態(tài)的研究結果,確定合理的浮選工藝,通過單因素條件試驗及開路流程優(yōu)化試驗,最終確定了最佳的浮選工藝流程。采用“一快速浮選一粗二精二掃”的閉路工藝流程,可獲得含銀3087g/t,回收率5.67%的銀精礦1和含銀2186g/t,回收率61.23%的銀精礦2。綜合精礦銀品位為2 242g/t,回收率66.9%,回收了該渣中的銀礦物。機理研究表明,六偏磷酸鈉是由多個(20~100)PO3-單元聚合而成的長鏈狀聚磷酸鹽,其在水中可電離出電負性較強的,能與所有金屬陽離子絡合形成穩(wěn)定絡合物;礦漿中加入六偏磷酸鈉之后,在粒子之間距離為2~4nm時出現(xiàn)較大的勢壘,粒子相互靠近時存在較大的斥力,隨著粒子間距離增大,斥力減小,礦漿處于分散狀穩(wěn)定狀態(tài)。
[Abstract]:At present, the recovery of silver from hydrometallurgical slag has become an important way of silver production. Silver from zinc leaching slag by conventional method can be recovered effectively by flotation, and industrial production has been realized. With the development of zinc hydrometallurgy technology, The leaching rate of zinc and other valuable metals was greatly improved by acid leaching at high temperature and high temperature, but silver was further enriched in the slag and not recovered. The sample was taken from a zinc smelter in Inner Mongolia. Zinc was leached by high temperature and high acid process, and the sample was zinc leaching slag. In this paper, the composition of the leaching slag was studied in detail. The soluble substance in the leaching slag was mainly zincosite, and the insoluble substance was mainly SO4? H2O, followed by silica gel and zinc (lead) ferric oxide, and residual mineral clasts (hematite, zinc-iron spinel, feldspar, etc.). The leaching slag contains about 240 g / t silver (about 400 g / t of silver after removing 40.96% water solutes from the residue). The main silver minerals in the leaching slag are chloriferite, which is determined by MLA automatic mineral detection system and multielement energy spectrum analysis. A sphalerite containing zinc oxide on the surface of some minerals in leachate, such as tetrahedrite, copper blue, chalcopyrite, and sphalerite. Fine silver is also distributed on the surface of oxidized ores such as silica gel or silicate minerals. Silver is mainly related to manganese, copper and sphalerite. According to the results of the study on the composition of leaching slag and the state of occurrence of silver, a reasonable flotation process is determined. Through the single factor condition test and the open circuit flow optimization test, the best flotation process was finally determined. The closed-circuit technological process of "one quick flotation, one coarse, two fine and two sweep" was adopted. Silver concentrate with silver content of 3087 g / t, silver concentrate with recovery rate of 5.67% and silver concentrate with silver recovery of 61.23% and silver concentrate with recovery of 5.67% g / t and 61.23% respectively were obtained. The silver grade of comprehensive concentrate was 2242 g / t and recovery rate was 66.9%. Silver minerals in the slag were recovered. Sodium hexametaphosphate is a kind of long chain polyphosphate which is formed by the unit polymerization of a number of 20 ~ (20) O _ (100) O _ (3-). It can ionize out electronegativity and form a stable complex with all metal cationic ions, and when sodium hexametaphosphate is added to the pulp, the sodium hexametaphosphate can be ionized into the water to form a stable complex. When the distance between particles is 2 ~ 4 nm, there is a larger barrier and a large repulsion force when the particles are close to each other. With the increase of the distance between particles, the repulsion force decreases, and the slurry is in a dispersive state.
【學位授予單位】:江西理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TD923;X758
【參考文獻】
相關期刊論文 前10條
1 楊建軍;丁朝;李永祥;謝克強;黃孟陽;王俠前;;濕法煉鋅渣綜合利用工藝現(xiàn)狀及分析[J];世界有色金屬;2011年06期
2 胡天覺,曾光明,陳維平,吳爭平;硫脲法浸出回收煉鋅廢渣中的銀[J];化工環(huán)保;1999年03期
3 薛元昕;薛光;;從酸浸渣中綜合回收金銀鐵鉛的試驗研究[J];黃金;2011年02期
4 謝雪飛;凡口鉛鋅礦銀礦物浮選行為的試驗研究[J];礦產保護與利用;2004年06期
5 黃汝杰;謝建宏;劉振輝;;從鋅冶煉渣中回收銀的試驗研究[J];礦冶工程;2013年02期
6 D.S.R.Murthy,劉秀珍,夏德長;用非氰化物浸出劑從Miller工藝廢渣中浸出金和銀[J];濕法冶金;1997年03期
7 龍小藝;喻陽玉;;用硫脲從脫硫鋅精礦渣中浸出銀的試驗研究[J];濕法冶金;2009年03期
8 鄧朝勇;張誼;楊茂麟;徐本軍;;用硫脲從含銀濕法煉鋅廢渣中浸出銀[J];濕法冶金;2011年03期
9 潘劍波;恭明璽;;鉛鋅業(yè)與環(huán)境的協(xié)調發(fā)展[J];中國有色金屬;2006年01期
10 劉子龍;秦曉鵬;;濕法煉鋅浸渣中回收銀的浮選試驗研究與生產實踐[J];有色礦冶;2010年01期
相關博士學位論文 前1條
1 周國華;提高鋅浸出渣中銀浮選回收率的工藝與理論研究[D];中南大學;2002年
相關碩士學位論文 前1條
1 肖芫華;鋅離子對濕法冶煉鋅渣中浮選回收銀的影響[D];江西理工大學;2012年
,本文編號:1539431
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/1539431.html