濕法吸收—過氧化物氧化去除—甲胺惡臭氣體
本文關(guān)鍵詞:濕法吸收—過氧化物氧化去除—甲胺惡臭氣體 出處:《中國海洋大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 過氧化物 濕法吸收氧化 一甲胺 Fe~(2+)活化 堿活化
【摘要】:一甲胺(CH3NH2)是一種小分子有機胺,是甲胺類惡臭氣體的典型代表之一。CH3NH2(g)嗅閾值低(0.021 ppmv),低濃度時即有強烈的刺激性魚臭味。其分子結(jié)構(gòu)簡單,難被生化降解,是急需治理的大氣污染物之一。濕法吸收-過氧化物氧化去除CH3NH2(g)惡臭氣體,是指在常溫常壓下,將CH3NH2(g)吸收到水中,并利用氧化劑將吸收后的CH3NH2(aq)氧化降解,達到惡臭氣體去除的目的。過氧化物具有強氧化性,對水中CH3NH2(aq)濃度的測定會造成干擾,因此,首先建立水中CH3NH2(aq)濃度的測定方法;然后進行過氧化物對水中CH3NH2(aq)降解性能的探討;最終結(jié)合前兩部分完成濕法吸收-過氧化物氧化去除CH3NH2(g)惡臭氣體的目的。過氧化物分別采用過氧化氫(H202)、過一硫酸氫鹽(PMS)和過二硫酸鹽(PS),探究不同pH、不同活化方式下過氧化物對CH3NH2(g)的去除情況,選取恰當(dāng)?shù)幕罨绞?優(yōu)化實驗條件,達到對CH3NH2(g)高效去除的目的。具體的研究內(nèi)容和結(jié)論如下:(1)建立了含強氧化劑溶液中CH3NH2(aq)濃度的測定方法。由于強氧化劑會對分光光度法測定水中CH3NH2(aq)濃度造成干擾,特對樣品中的CH3NH2(aq)進行吹脫與吸收實驗,分離CH3NH2(aq)達到去除氧化劑干擾的目的。探究了進氣速度、吹脫液NaOH濃度、通氣時間、吸收液H2SO4濃度等因素對CH3NH2(aq)吹脫與吸收實驗的影響。在進氣速度為0.3 L/min,NaOH濃度為10mol/L,通氣時長為10 min, H2SO4濃度為0.03 mol/L時,CH3NH2(aq)濃度測定方法的相對標(biāo)準(zhǔn)偏差(RSD)為3.66%,相對回收率達88.9-105.9%。因此該方法能夠?qū)悠分械腃H3NH2(aq)完全提取,避免氧化劑干擾,達到測定含強氧化劑溶液中CH3NH2(aq)濃度的目的。(2)氧化劑對水中CH3NH2(aq)降解性能的研究。為探究濕法吸收-過氧化物氧化去除CH3NH2(g)惡臭氣體,首先進行三種氧化劑(H2O2、PMS、PS)降解水中CH3NH2(aq)的實驗探究。研究了在不同pH(3~11)條件下,單獨過氧化物和經(jīng)Fe2+活化的過氧化物對水中CH3NH2(aq)的降解能力。單獨過氧化物實驗中,只有PMS在堿性條件下能夠?qū)H3NH2(aq)進行有效降解,且pH去除能力依次為:11109;在酸性條件下,三種過氧化物的去除效果均不理想。經(jīng)Fe2+活化過氧化物后,堿性條件下對CH3NH2(aq)的降解能力不變;酸性條件下PS的降解效果顯著提高。三種過氧化物對CH3NH2(aq)降解性能不同,推測可能與自身的分子結(jié)構(gòu)有關(guān)。(3)重點研究了濕法吸收-鐵活化PS對CH3NH2(g)惡臭氣體的去除。pH=3時水對CH3NH2(g)惡臭氣體的單獨吸收性能優(yōu)良。采用Fe2+活化PS去降解所吸收的CH3NH2(aq),但效果不好。為提高去除效果,比較了單獨Fe2+活化、檸檬酸(CA)螯合Fe2+活化、單獨Fe0活化、CA聯(lián)合Fe0活化等4種不同活化方式對CH3NH2(g)濕法氧化去除效果的影響。單獨用鐵活化PS處理CH3NH2(g)時,CH3NH2(g)去除效果Fe0優(yōu)于Fe2+;然而在使用CA之后,Fe2+效果優(yōu)于Fe0。存在差異的原因,可能是不同活化方式下Fe2+釋放速率不同引起的,Fe2+的釋放速率影響了Fe2+的存在時間,從而影響PS的活化分解,進一步對CH3NH2(g)的去除效果產(chǎn)生影響。(4)研究了濕法吸收-堿活化PMS對CH3NH2(g)惡臭氣體的去除。探究了PMS濃度和OH-濃度等因素對CH3NH2(g)濕法吸收去除的影響,同時對何種自由基起主導(dǎo)作用進行了探究。進氣速率固定時,水在堿性條件下對CH3NH2(g)的吸收與酸性條件下的吸收能力相比近乎相同,因此,堿活化PMS的方式不會對水吸收CH3NH2(g)造成影響。CH3NH2(g)去除效果隨著PMS濃度和OH-濃度的升高而升高,緩沖溶液調(diào)pH能夠提高去除效果。在此條件下HO·對CH3NH2(g)去除起主導(dǎo)作用,原因可能在于HO·能夠與分子態(tài)的CH3NH2(aq)迅速反應(yīng)。
[Abstract]:Methylamine (CH3NH2) is a small molecule organic amine methylamine, is one of the typical representatives of malodorous gases.CH3NH2 (g) low odor threshold (0.021 ppmv), low concentration has a strong pungent smell of fish. Its molecular structure is simple, hard to be degraded, is one of the urgent need of the governance of air pollutants the removal of CH3NH2. Wet peroxide oxidation absorption (g) refers to the malodorous gas at room temperature and atmospheric pressure, CH3NH2 (g) to absorb water, and use of oxidant CH3NH2 (AQ) will be absorbed after oxidative degradation, achieve the aim of removing malodorous gases. Peroxide has strong oxidation in water, CH3NH2 (AQ) determination of the concentration will cause interference, therefore, first established in CH3NH2 (AQ) method for the determination of the concentration of CH3NH2 in water; then the peroxidase (AQ) to investigate the degradation performance; finally the combination of the first two parts to complete removal of CH3NH2 absorption - wet peroxide oxidation (G) malodorous gases The purpose of using hydrogen peroxide. The peroxide (H202), a salt of hydrogen sulfate (PMS) and two (PS), to explore the different sulfate pH, different activation mode of peroxide on CH3NH2 (g) removal, select the appropriate mode of activation, optimizing the experimental conditions, to reach CH3NH2 (g) removal purpose. The specific research contents and conclusions are as follows: (1) established a strong oxidant in the solution containing CH3NH2 (AQ) method for the determination of concentration. Due to the strong oxidizing agent will CH3NH2 in water by spectrophotometry (AQ) concentration caused by interference, especially on samples of the CH3NH2 (AQ) stripping and absorption the separation of CH3NH2 (AQ) to remove the oxidant interference. To explore the inlet speed, stripping liquid NaOH concentration, ventilation time, factors of absorption liquid H2SO4 concentration on the removal effect of CH3NH2 (AQ) blowing experiment. In the intake and absorption rate of 0.3 L/min, NaOH concentration is 10mol/L, ventilation time 10 min, H2SO4 concentration was 0.03 mol/L, CH3NH2 (AQ) method for the determination of the relative standard deviation (RSD) was 3.66%, the relative recovery rate reached to 88.9-105.9%. so that the method in the sample of CH3NH2 (AQ) completely extracted, to avoid interference to the determination of the content of oxidant, strong oxidant solution CH3NH2 (AQ the concentration of purpose.) (2) CH3NH2 oxidant in water (AQ). To explore the degradation performance of wet peroxide oxidation absorption and removal of CH3NH2 (g) malodorous gases, first three oxidants (H2O2, PMS, PS) degradation of CH3NH2 (AQ). The experiment studied under different pH (3 ~ 11) under the condition of separate peroxides and activated by Fe2+ peroxidase CH3NH2 in water (AQ). The degradation ability of peroxide alone in the experiment, only PMS under alkaline conditions to CH3NH2 (AQ) for effective degradation and pH removal capacity is as follows: 11109 in acidic conditions, three; Removal of peroxides are not ideal. The activation of Fe2+ peroxidase, alkaline condition of CH3NH2 (AQ) constant degradation capability; the effect of PS degradation under acidic conditions significantly improved. Three kinds of peroxidase CH3NH2 (AQ) degradation performance of different, that may be related with its molecular structure. (3) focus on wet absorption - iron activated PS CH3NH2 (g) of malodorous gas removal of.PH=3 on CH3NH2 (g) malodorous gases alone excellent absorption. Activation of PS absorbed by Fe2+ to the degradation of CH3NH2 (AQ), but the effect is not good. In order to improve the removal efficiency, compared with the activation of Fe2+, lemon acid (CA) Chelating Fe2+ activation, single Fe0 activation, activation of Fe0 CA combined with 4 different activation methods on CH3NH2 (g) effect of wet oxidation removal. Alone with iron activated PS processing CH3NH2 (g), CH3NH2 (g) removal effect of Fe0 is better than Fe2+; however, after using CA, F E2+ Fe0. is better than the differences, may be the release rate of Fe2+ under different activation caused by different, the release rate of Fe2+ affects the existence time of Fe2+, thus affecting the activation of PS, CH3NH2 (g) to further affect the removal effect. (4) studied the wet absorption alkali activated PMS on CH3NH2 (g) removal of malodorous gases. To explore the factors of PMS concentration and OH- concentration on CH3NH2 (g) removal effect and wet absorption, and what kind of free radicals play a leading role in the probe. The intake rate is fixed, the water in the alkaline condition of CH3NH2 (g) absorption capacity and absorption under acidic conditions compared with almost the same, therefore, PMS would not be the way of alkaline activated water absorption of CH3NH2 (g) caused by the influence of.CH3NH2 (g) removal efficiency increased with the increase of PMS concentration and OH- concentration, buffer solution pH can improve the removal efficiency. Under this condition HO. The main reason for CH3NH2 (g) removal may be that HO is able to react quickly with the molecular state CH3NH2 (AQ).
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X512
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 傅汝文,吳中衍;濕法散堆蔗渣場地面防腐實踐[J];廣西輕工業(yè);1998年04期
2 魏正坤;;濕法兩段一閉路粉磨技術(shù)及其應(yīng)用情況[J];磷肥與復(fù)肥;2006年04期
3 劉麗君,湯寶龍;過氧化氫濕法氧化模擬有機污物的研究[J];核化學(xué)與放射化學(xué);2005年01期
4 向紅霞;羅琳;薛偉;;冶鋅廢渣中銅鋅鎘的濕法回收試驗研究[J];礦業(yè)研究與開發(fā);2009年01期
5 徐春生;濕法一步法制膏工藝的研究[J];日用化學(xué)工業(yè);1993年01期
6 藺小力;;水泥立窯濕法收塵技術(shù)研究的新進展[J];環(huán)境科學(xué)與管理;2008年11期
7 段晨龍;趙躍民;葉璀玲;石常省;張洪建;;廢棄電路板濕法破碎粒度特性研究[J];中國礦業(yè)大學(xué)學(xué)報;2008年01期
8 焦志良;陳為亮;張旭;朱玉平;許康;齊妍潔;;從二次含鉛物料中濕法回收鉛的研究現(xiàn)狀[J];濕法冶金;2014年02期
9 倪麗娜;李滬萍;羅康碧;蘇毅;;磷礦的濕法分解研究現(xiàn)狀[J];化工科技;2013年01期
10 林萱,石玉敏,龐丹,雷靜艷;濕法提純金工藝的改進[J];黃金;1997年05期
中國重要會議論文全文數(shù)據(jù)庫 前7條
1 葉其輝;李核;常玉;孫艷輝;陳紅雨;;提高濕法提純多晶硅回收率的方法[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
2 王濤;劉軍;孫軼敏;方夢祥;;濕法再生CO_2吸附動力學(xué)試驗研究[A];高等學(xué)校工程熱物理第十九屆全國學(xué)術(shù)會議論文集[C];2013年
3 茆平;孫丙誠;楊毅;陳守文;;納米二氧化鈦粉塵濕法采樣研究[A];2010年海峽兩岸環(huán)境與能源研討會摘要集[C];2010年
4 劉盛余;徐圓圓;曲兵;;濕法脫除煙氣中NO的研究現(xiàn)狀[A];成都市科技年會分會場——世界現(xiàn)代田園城市空氣環(huán)境污染防治學(xué)術(shù)交流會論文集[C];2010年
5 楊毅;周先國;王正萍;沈才萍;張敏;朱斌;;納米TiO_2粉塵干法濕法采集對比研究[A];中國顆粒學(xué)會第六屆學(xué)術(shù)年會暨海峽兩岸顆粒技術(shù)研討會論文集(上)[C];2008年
6 蘇繼新;王曉鵬;牟真;聶玉倫;張瑩;王春海;;濕法煙氣處理廢水中NO_2~-、NO_3~-的生成機理研究[A];中國化學(xué)會第七屆水處理化學(xué)大會暨學(xué)術(shù)研討會會議論文集[C];2004年
7 檀正東;史建衛(wèi);周旋;王海英;杜彬;;新型高效濕法錫渣分離技術(shù)[A];2014中國高端SMT學(xué)術(shù)會議論文集[C];2014年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 霍梅青;濕法吸收—過氧化物氧化去除—甲胺惡臭氣體[D];中國海洋大學(xué);2015年
2 柴碩;水下濕法多道焊接熱循環(huán)特征分析及冶金行為預(yù)測[D];天津大學(xué);2014年
3 張玉國;濕法氧化于垂直腔面發(fā)射激光器應(yīng)用[D];吉林大學(xué);2014年
4 黃藝;尿素濕法聯(lián)合脫硫脫硝技術(shù)研究[D];浙江大學(xué);2006年
5 明磊凌;亞鐵絡(luò)合吸收濕法脫硫脫硝試驗研究[D];哈爾濱工業(yè)大學(xué);2010年
6 余少強;水玻璃舊砂濕法再生污水硅藻處理試驗研究[D];華中科技大學(xué);2013年
7 韓紀(jì)昱;濕法煉金中溶解氧監(jiān)測技術(shù)研究及儀器設(shè)計[D];浙江大學(xué);2014年
8 Juan Felipe Cerdas Marín;基于LCA的廢鉛酸蓄電池濕法和火法回收工藝環(huán)境影響比較研究[D];華中科技大學(xué);2013年
9 肖靈;氧化結(jié)合鈣基濕法脫除NO_x的工藝研究[D];浙江大學(xué);2011年
10 嚴(yán)召;Zn/Fe體系濕法催化氧化高效脫除沼氣中H_2S回收硫磺研究[D];湘潭大學(xué);2008年
,本文編號:1393988
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/1393988.html