改良A~2O-側流除磷工藝脫氮除磷及微生物菌落特征研究
本文關鍵詞:改良A~2O-側流除磷工藝脫氮除磷及微生物菌落特征研究 出處:《中國海洋大學》2015年碩士論文 論文類型:學位論文
更多相關文章: 限氧漸增曝氣 側流除磷 反硝化聚磷菌 脫氮除磷 微生物群落 高通量測序
【摘要】:針對目前城鎮(zhèn)污水低碳源脫氮除磷難,污泥處理處置難,城鎮(zhèn)污水廠運行成本高等問題,本文提出一種新型組合式工藝改良A20-側流除磷工藝,來解決城鎮(zhèn)污水面臨的難題。新型組合工藝應用改良A20為處理反應器,結合側流除磷技術,以城市污水處理廠曝氣沉砂池出水為處理對象,探討系統(tǒng)在長污泥齡(SRT)低碳源、限氧曝氣等條件下脫氮除磷效果,同時采用現(xiàn)代分子生物學技術解析側流除磷過程中活性污泥微生物群落結構、組成與相對豐度變化。研究結果表明:1)采用限氧漸增方式曝氣,合理分配溶解氧(DO),在降低33.3%曝氣量情況下,系統(tǒng)有好的脫氮效果,其中COD、氨氮、TN去除率分別達到72%、95.8%、51.1%,出水濃度分別為27.5mg·L-1、0.65 mg·L-1、15.1 mg·L-1;2)在A20厭氧前端增設小段缺氧池可以很好的反硝化降低硝酸根濃度,使其濃度小于1.5 mg·L-1,減輕了硝酸根對厭氧釋磷的抑制作用;3)污泥外循環(huán)側流量越大,TP去除效果越好,回流點為缺氧池時系統(tǒng)TP去除效果要好于厭氧池、好氧池;4)側流除磷和厭氧缺氧好氧交替變化可以富集強化聚磷菌(PAOs)和反硝化聚磷菌(DNPAOs),側流后DNPAOs占PAOs,總量的84%,TN去除率由側流前的51.1%升高到側流后的61.1%,TP去除率由35.5%升高到92.7%,但側流前后COD、NH4+-N去除無顯著差異,去除率分別在74%、95%左右。另外,這種結合工藝可以實現(xiàn)污泥減量化和解決除磷菌與脫氮菌之間的生長代時矛盾。微生物群落分析發(fā)現(xiàn),側流改變了反應器細菌群落結構及微生物種類組成相對豐度發(fā)現(xiàn)。側流除磷后,反硝化除磷微生物Thauera spp和Dechloromonas spp.豐度值分別提高至9.0%和8.5%,而Acinetobacter spp.豐度值從8.9%下降至1.2%。綜合結果表明,將側流除磷技術與改良A20工藝相結合,可以富集反硝化除磷菌,提高聚磷菌釋磷能力。同時可以解決除磷菌與脫氮菌之間的泥齡矛盾,實現(xiàn)在長污泥齡(140d)下穩(wěn)定去除污染物,使出水水質基本滿足城鎮(zhèn)污水排放—級A標準。
[Abstract]:In view of the problems of low carbon source nitrogen and phosphorus removal, sludge treatment and disposal, and high operating cost of urban sewage plant, a new combined process was proposed to improve the A20-side flow phosphorus removal process. The new combined process uses modified A20 as the treatment reactor, combined with the side flow phosphorus removal technology, and takes the effluent from the aeration sand settling tank of the municipal sewage treatment plant as the treatment object. The effect of denitrification and phosphorus removal by the system under the condition of low carbon source and limited oxygen aeration was discussed. Meanwhile, the microbial community structure of activated sludge in the process of side flow phosphorus removal was analyzed by modern molecular biology technology. The results show that the system has good denitrification effect under the condition of reducing the aeration rate by reducing the aeration rate of 33.3%. The removal rates of COD, NH3-N and TN reached 722 ~ 95.8% and 51.1% respectively, and the effluent concentration was 27.5mg 路L ~ (-1) and 0.65 mg 路L ~ (-1) respectively. 15.1 mg 路L -1; 2) adding a small section of anoxic cell to the front end of A20 can reduce nitrate concentration to less than 1.5 mg 路L ~ (-1), which can reduce the inhibitory effect of nitrate on anaerobic phosphorus release; 3) the removal effect of TP is better with the increase of the flow rate of sludge outer circulation side, and the removal efficiency of TP is better than that of anaerobic pond and aerobic pool when the reflux point is anoxic pool. (4) alternate variation of phosphorus removal and anaerobic anoxic aerobic activity can enrich Phosphorus-accumulating bacteria and denitrifying phosphorus-accumulating bacteria DNPAOs.After side flow, DNPAOs accounts for 84% of the total. TN removal rate increased from 51.1% before the side flow to 61.1% TP after the side flow, but the removal rate of TP increased from 35.5% to 92.7%, but the COD increased before and after the side flow. The removal rate of NH4-N was about 95% or so. The combined process can realize sludge reduction and solve the contradiction between phosphorus removal bacteria and denitrifying bacteria. The relative abundance of bacteria community structure and microbial species composition was found in the side flow, and phosphorus was removed by the side flow. The abundance of denitrifying phosphorus removal microorganism Thauera spp and Dechloromonas SPP. Increased to 9.0% and 8.5% respectively. However, the abundance of Acinetobacter SPP. Decreased from 8.9% to 1.2. The results showed that the side flow phosphorus removal technology was combined with the modified A20 process. It can enrich denitrifying phosphorus removal bacteria, improve the phosphorus release ability of phosphorus accumulating bacteria, solve the mud age contradiction between phosphorus removal bacteria and denitrification bacteria, and realize the stable removal of pollutants under the condition of 140 days of long sludge age. The effluent quality basically meets the class A standard of urban sewage discharge.
【學位授予單位】:中國海洋大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X703
【參考文獻】
相關期刊論文 前10條
1 郭小馬;趙焱;王開演;趙陽國;;分格復合填料曝氣生物濾池脫氮除磷特性及微生物群落特征分析[J];環(huán)境科學學報;2015年01期
2 呂晶華;馬挺;鄭先強;段云霞;李召雨;;PCR-DGGE技術解析A~2/O工藝好氧單元中微生物群落結構[J];環(huán)境工程學報;2012年06期
3 ;Nitrogen removal and simultaneous nitrification and denitrification in a fluidized bed step-feed process[J];Journal of Environmental Sciences;2012年02期
4 王興春;楊致榮;王敏;李瑋;李生才;;高通量測序技術及其應用[J];中國生物工程雜志;2012年01期
5 Abd El-Latif Hesham;;Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis[J];Journal of Environmental Sciences;2011年12期
6 秦楠;栗東芳;楊瑞馥;;高通量測序技術及其在微生物學研究中的應用[J];微生物學報;2011年04期
7 徐玉潔;張雁秋;楊德軍;李燕;;改良型雙污泥工藝處理低C/N城市污水[J];安徽農業(yè)科學;2011年10期
8 高大文;李昕芯;安瑞;付源;任南琪;;不同DO下MBR內微生物群落結構與運行效果關系[J];中國環(huán)境科學;2010年02期
9 張智;陳杰云;李勇;周嬌;陳永紅;;處理低碳源污水的倒置A~2/O工藝強化脫氮技術研究[J];中國給水排水;2009年13期
10 胡學斌;楊柳;吉芳英;習勁;萬小軍;胥池;何強;;低碳源城市污水的低氧同步脫氮除磷研究[J];中國給水排水;2009年13期
,本文編號:1385269
本文鏈接:http://www.sikaile.net/kejilunwen/huanjinggongchenglunwen/1385269.html