氧化鋁陶瓷磨削溫度的有限元仿真及試驗(yàn)研究
[Abstract]:Alumina ceramics have been used in many fields for their excellent physical and chemical properties, but it is also a typical refractory material. At present, alumina ceramics are mainly ground by diamond abrasive tools. The removal mechanism of ceramic materials is closely related to grinding temperature. However, there are still many problems in measuring and analyzing the actual grinding temperature of alumina ceramics. In this paper, the grinding temperature of alumina ceramics with single diamond abrasive, finite diamond abrasive and uniformly arranged diamond abrasive particles is studied. The grinding force and temperature of a single abrasive particle were measured and compared with the results of the finite element simulation model with thermocouple. The heat distribution ratio of the workpiece was corrected to optimize the simulation model. On this basis, the effects of thermocouple, grinding parameters, abrasive particle number and abrasive particle position on grinding temperature are studied. The main research results are as follows: 1. The experimental and simulation results show that the grinding temperature increases with the increase of feed speed and grinding speed. Under the same heat source strength condition, the addition of thermocouple will lead to the increase of grinding temperature value, and the increase amplitude is related to the processing parameters. 3. By fitting the test temperature with the simulation temperature, the heat distribution ratio of the imported workpiece is corrected. The heat distribution ratio 位 increases with the increase of grinding depth and grinding wheel speed, and the fluctuation range is large. 4. The number and amplitude of thermal pulse signal obtained by grinding temperature measurement are closely related to the distribution of abrasive particles after thermocouple. Axial distribution of abrasive particles will affect the intensity of thermal pulses, while circumferential particles will affect the number of thermal pulses. Under the same grinding conditions, the increase of heat source of abrasive particles will lead to the increase of grinding temperature. The grinding temperature signal obtained by temperature measurement is the result of the interaction of several abrasive particles.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ174.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯艷玲,黃輝;磨削溫度研究的現(xiàn)狀與進(jìn)展[J];珠寶科技;2003年04期
2 張冬梅;劉傳紹;趙波;焦鋒;高國(guó)富;;磨削溫度理論研究的現(xiàn)狀與進(jìn)展[J];工具技術(shù);2006年05期
3 史建茹;黃大宇;董智勇;;基于網(wǎng)絡(luò)的監(jiān)測(cè)技術(shù)在磨削溫度監(jiān)控上的應(yīng)用[J];中原工學(xué)院學(xué)報(bào);2007年04期
4 董智勇;;基于網(wǎng)絡(luò)的磨削溫度紅外監(jiān)測(cè)系統(tǒng)研究[J];微型電腦應(yīng)用;2008年09期
5 梁松堅(jiān);劉亞俊;張發(fā)英;;用飛升響應(yīng)曲線法校準(zhǔn)磨削溫度信號(hào)的研究[J];工具技術(shù);2010年06期
6 孟慶國(guó),李文卓;磨削溫度場(chǎng)的數(shù)值計(jì)算[J];機(jī)械工藝師;1996年10期
7 于云霞,孟慶國(guó),李文卓;磨削溫度場(chǎng)的分析與計(jì)算[J];管道技術(shù)與設(shè)備;1996年03期
8 王霖 ,秦勇 ,劉鎮(zhèn)昌 ,葛培琪 ,孫建國(guó) ,高偉;計(jì)算機(jī)仿真技術(shù)在磨削溫度場(chǎng)中的應(yīng)用[J];工具技術(shù);2001年10期
9 蘭雄侯,王繼先,高航;磨削溫度理論研究的現(xiàn)狀與進(jìn)展[J];金剛石與磨料磨具工程;2001年03期
10 董濤,李迎,侯麗雅;磨削溫度在線監(jiān)控系統(tǒng)的預(yù)報(bào)建模[J];中國(guó)機(jī)械工程;2002年05期
相關(guān)碩士學(xué)位論文 前10條
1 胡海峰;成形磨齒工藝參數(shù)對(duì)磨削溫度的影響規(guī)律及試驗(yàn)研究[D];河南科技大學(xué);2015年
2 邱奕;Cr12MoV模具鋼磨削溫度場(chǎng)及殘余應(yīng)力研究[D];湘潭大學(xué);2015年
3 呂自強(qiáng);聚焦超聲冷卻系統(tǒng)在精密磨削加工中的應(yīng)用研究[D];河南工業(yè)大學(xué);2015年
4 郭珍吉;超高速磨削溫度的仿真研究[D];東北大學(xué);2014年
5 何銓鵬;超高速離心磨削工藝穩(wěn)健性研究[D];廣州大學(xué);2016年
6 徐楊;點(diǎn)磨削溫度場(chǎng)及軸向傳熱機(jī)制研究[D];東北大學(xué);2013年
7 張國(guó)華;超高速磨削溫度的研究[D];湖南大學(xué);2006年
8 李平化;特殊金屬磨削溫度的有限元仿真與實(shí)驗(yàn)研究[D];湖南大學(xué);2011年
9 李榮洲;高硬度涂層材料磨削溫度場(chǎng)的試驗(yàn)研究與模擬仿真[D];上海交通大學(xué);2009年
10 馬生彪;磨削加工過(guò)程振動(dòng)仿真與磨削溫度預(yù)測(cè)[D];鄭州大學(xué);2011年
,本文編號(hào):2272773
本文鏈接:http://www.sikaile.net/kejilunwen/huagong/2272773.html