三元鉑基納米催化劑的制備及其對乙醇氧化催化行為的研究
發(fā)布時間:2018-06-06 23:31
本文選題:燃料電池 + 直接乙醇燃料電池; 參考:《西南大學》2017年碩士論文
【摘要】:直接乙醇燃料電池(Direct ethanol fuel cell,DEFC)利用液體乙醇為燃料,可以直接將儲存在乙醇中的化學能轉化為電能,是一種具有廣闊應用前景的供能系統(tǒng),對于解決當今世界面臨的能源危機和環(huán)境污染這兩大難題具有十分重要的意義。目前,DEFC因為乙醇燃料的理論能量密度高,毒性小,成本低廉,可以通過生物質(zhì)發(fā)酵的方法大規(guī)模生產(chǎn)等諸多優(yōu)點而受到了國內(nèi)外科研工作者的廣泛關注。迄今為止,貴金屬Pt是最常用的DEFC陽極催化劑,但是,由于Pt儲量少、價格昂貴并且容易受到中間產(chǎn)物的毒化,從而嚴重阻礙了DEFC的商業(yè)化進程。因此,制備高效、低成本的Pt基合金陽極催化劑成為DEFC研究領域的重大課題。本論文概述了DEFC的研究背景,介紹了DEFC的工作原理和陽極反應機理,總結了DEFC陽極催化劑的研究進展,分析了催化劑載體材料對催化劑催化性能的影響。在此基礎上,以制備高效、低成本的Pt基合金陽極催化劑為目標,探索通過調(diào)控催化劑的元素組成以及催化劑的載體材料來提高其對乙醇氧化反應的催化性能,并且進一步分析其內(nèi)在機理,為DEFC陽極催化劑催化性能的提升提供有益的借鑒。本論文的主要研究內(nèi)容歸納如下:1.石墨烯負載Pt基合金納米顆粒作為DEFC陽極催化劑的應用運用改性的多元醇一步還原法,在石墨烯上直接生長Pt1Ru0.5Sn0.5三元合金納米顆粒(Pt1Ru0.5Sn0.5-RGO),Pt1Ru1二元合金納米顆粒(Pt1Ru1-RGO)以及Pt1Sn1二元合金納米顆粒(Pt1Sn1-RGO),并把它們作為直接乙醇燃料電池中乙醇氧化的催化劑材料。為了便于比較,三者均在相同的實驗條件下和商業(yè)化Pt-C催化劑進行了比較。實驗中,Pt1Ru0.5Sn0.5-RGO顯示了高達51.7 m2·g-1 Pt的電化學活性面積(ECSA),是商業(yè)化Pt-C的1.49倍。在乙醇氧化的催化反應中,Pt1Ru0.5Sn0.5-RGO催化劑的質(zhì)量電流密度(1287 mA·mg-1 Pt)和面積電流密度(24.89 A·m-2 Pt)分別是商業(yè)化Pt-C催化劑的2.07倍和1.38倍。此外,與商業(yè)化Pt-C,Pt1Ru1-RGO和Pt1Sn1-RGO催化劑相比,Pt1Ru0.5Sn0.5-RGO催化劑表現(xiàn)出最負的初始反應電位(0.633 V)和最好的催化穩(wěn)定性。研究結果表明,石墨烯負載Pt1Ru0.5Sn0.5三元合金納米顆粒的催化劑Pt1Ru0.5Sn0.5-RGO,因為石墨烯的優(yōu)異特性以及Pt、Ru、Sn三種元素之間的協(xié)同作用,表現(xiàn)出對乙醇氧化具有最好的催化活性和最佳的催化穩(wěn)定性,具有一定的應用潛力。2.不同碳載體負載Pt3Ru0.5Cu0.5三元合金納米顆粒對乙醇氧化反應的影響運用NaBH4一步還原法,分別制備由石墨烯片層相互交織堆疊形成的多孔三維石墨烯作為載體負載Pt3Ru0.5Cu0.5三元合金納米顆粒(Pt3Ru0.5Cu0.5-3D RGO),零維Vulcan XC-72碳粉作為載體負載Pt3Ru0.5Cu0.5三元合金納米顆粒(Pt3Ru0.5Cu0.5-C)以及一維碳納米管作為載體負載Pt3Ru0.5Cu0.5三元合金納米顆粒(Pt3Ru0.5Cu0.5-CNT)。將這些不同碳載體負載的三元合金納米顆粒用作乙醇氧化反應的催化劑,同時與商業(yè)化Pt-C催化劑進行了比較。研究結果表明,三維石墨烯作為載體的Pt3Ru0.5Cu0.5-3D RGO催化劑具有最大的電化學活性面積(ECSA)(54.8 m2·g-1 Pt),對乙醇氧化反應具有最高的質(zhì)量電流密度(1378 mA·mg-1 Pt)和最高的面積電流密度(25.14 A·m-2 Pt),最好的催化活性以及最佳的催化穩(wěn)定性?梢,由石墨烯片層相互交織堆疊形成的多孔三維石墨烯載體材料促進了Pt3Ru0.5Cu0.5三元合金納米小顆粒的均勻沉積和分散,并且在催化反應的過程中有效阻止了Pt3Ru0.5Cu0.5三元合金納米小顆粒的團聚,進而提高了催化劑中Pt的利用率,同時三維石墨烯的多孔結構還促進了乙醇氧化反應過程中的傳質(zhì)速率和電子傳輸速率。因此,與零維和一維碳載體相比,三維石墨烯作為載體材料在Pt負載量相同的情況下提高了催化劑的催化活性與穩(wěn)定性,證明了三維石墨烯是一種比較有應用前景的催化劑載體材料。綜上所述,本論文的工作主要揭示了通過合金化的方法改變催化劑的元素組成,以及選用合適的催化劑載體材料,結合催化劑組成元素之間的協(xié)同作用和載體材料的優(yōu)異特性,可以明顯提高直接乙醇燃料電池陽極催化劑的催化活性和催化穩(wěn)定性。
[Abstract]:Direct ethanol fuel cell (Direct ethanol fuel cell, DEFC) uses liquid ethanol as fuel and can directly convert chemical energy stored in ethanol into electrical energy. It is a promising energy supply system. It is of great significance to solve the two problems of energy crisis and environmental pollution in the world today. Before, DEFC has been widely concerned by researchers at home and abroad because of its high theoretical energy density, low toxicity and low cost. It has been widely concerned by researchers at home and abroad. So far, precious metal Pt is the most commonly used DEFC anodizing agent. However, because of the low Pt reserves, the price is expensive and is easy to accommodate. It is easy to be poisoned by intermediate products, which seriously hinders the commercialization of DEFC. Therefore, the preparation of high efficiency and low cost Pt based alloy anode catalysts is a major issue in the field of DEFC. This paper summarizes the research background of DEFC, introduces the working principle of DEFC and the mechanism of anode reaction, and summarizes the research progress of the DEFC anode catalyst. The effect of the catalyst carrier material on the catalytic performance of the catalyst was analyzed. On this basis, a high efficient and low cost Pt based alloy anode catalyst was designed to improve the catalytic performance of the catalyst by regulating the element composition of the catalyst and the carrier material of the catalyst, and further analyzing the intrinsic properties of the catalyst. The main research contents of this paper are as follows: 1. the Pt based alloy nanoparticles loaded with graphene are used as the DEFC anode catalyst for the application of the modified polyol one step reduction method to direct the growth of Pt1Ru0.5Sn0.5 three element alloy nanoparticles on the graphene (Pt1Ru). (Pt1Ru 0.5Sn0.5-RGO), Pt1Ru1 two element alloy nanoparticles (Pt1Ru1-RGO) and Pt1Sn1 two element alloy nanoparticles (Pt1Sn1-RGO), and use them as a catalyst for the oxidation of ethanol in direct ethanol fuel cells. For the convenience of comparison, the three were compared with commercial Pt-C catalysts under the same experimental conditions. In the experiment, Pt1Ru0.5Sn0. 5-RGO shows an electrochemical active area of up to 51.7 m2. G-1 Pt (ECSA), which is 1.49 times as high as commercialized Pt-C. In the catalytic reaction of ethanol oxidation, the mass current density (1287 mA. Mg-1 Pt) and area current density (24.89 A. M-2) are 2.07 times and 1.38 times as much as commercialized catalyst. Compared with the Pt-C, Pt1Ru1-RGO and Pt1Sn1-RGO catalysts, the Pt1Ru0.5Sn0.5-RGO catalyst showed the most negative initial reaction potential (0.633 V) and the best catalytic stability. The results showed that the catalyst Pt1Ru0.5Sn0.5-RGO for the Pt1Ru0.5Sn0.5 three element alloy nanoparticles supported by graphene, because of the excellent properties of graphene and the three kinds of Pt, Ru, Sn. The synergistic effect between elements shows the best catalytic activity and the best catalytic stability for ethanol oxidation, and has certain potential application potential.2. with different carbon carrier load Pt3Ru0.5Cu0.5 three element alloy nanoparticles on the oxidation of ethanol by using NaBH4 one-step reduction method to prepare each interlaced stack of graphene lamellae respectively. The porous three-dimensional graphene as carrier load Pt3Ru0.5Cu0.5 three element alloy nanoparticles (Pt3Ru0.5Cu0.5-3D RGO), zero dimension Vulcan XC-72 carbon powder as carrier load Pt3Ru0.5Cu0.5 three element alloy nanoparticles (Pt3Ru0.5Cu0.5-C) and one dimension carbon nanotube as carrier load Pt3Ru0.5Cu0.5 three element alloy nanoparticles (Pt3Ru0.5Cu0.) 5-CNT). The three element alloy nanoparticles loaded with different carbon carriers were used as a catalyst for ethanol oxidation and compared with commercialized Pt-C catalysts. The results showed that the Pt3Ru0.5Cu0.5-3D RGO catalyst with three-dimensional graphene as a carrier had the maximum electrochemical active area (ECSA) (54.8 m2. G-1 Pt), and ethanol oxygen. The reaction has the highest mass current density (1378 mA. Mg-1 Pt) and the highest area current density (25.14 A. M-2 Pt), the best catalytic activity and the best catalytic stability. It can be seen that the porous three-dimensional graphene carrier material, formed by the interlacing and stacking of graphene lamellae, promotes the Pt3Ru0.5Cu0.5 three element alloy nanoparticles Homogeneous deposition and dispersion, and in the process of catalytic reaction effectively prevent the agglomeration of Pt3Ru0.5Cu0.5 three element alloy nanoparticles, and then improve the utilization of Pt in the catalyst. Meanwhile, the porous structure of the three-dimensional graphene also promotes the mass transfer rate and electron transport rate in the process of ethanol oxidation. Therefore, it is with zero dimension and one dimension. Compared with the carbon carrier, the three-dimensional graphene as a carrier material has improved the catalytic activity and stability of the catalyst under the same load of Pt. It is proved that the three-dimensional graphene is a promising catalyst carrier material. In summary, the work of this paper mainly reveals the change of the catalyst element through the method of alloying. It can obviously improve the catalytic activity and catalytic stability of the anode catalyst for direct ethanol fuel cell with the composition of the element, the selection of the suitable catalyst carrier material, the synergistic effect of the elements of the catalyst and the excellent properties of the carrier materials.
【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O643.36;TM911.4
【參考文獻】
相關期刊論文 前5條
1 王琪;陸興;辛勤;孫公權;;多元醇法合成的Pt_(2.6)Sn_1Ru_(0.4)/C用作直接乙醇燃料電池高性能陽極催化劑(英文)[J];催化學報;2014年08期
2 倪紅軍;呂燦燦;王旭紅;江學范;湯東;;Pt-SnO_2/C電催化劑異型直接乙醇燃料電池的性能[J];江蘇大學學報(自然科學版);2012年04期
3 侯明;衣寶廉;;燃料電池技術發(fā)展現(xiàn)狀與展望[J];電化學;2012年01期
4 趙蓮花;光\鮒氐,
本文編號:1988583
本文鏈接:http://www.sikaile.net/kejilunwen/huagong/1988583.html
教材專著