光催化納米顆粒強化光發(fā)酵細菌Rhodopseudomonas sp.nov.strain A7產氫規(guī)律與機制研究
發(fā)布時間:2018-05-12 04:08
本文選題:光催化 + 納米顆粒。 參考:《哈爾濱工業(yè)大學》2015年碩士論文
【摘要】:目前,能源短缺仍是當今世界面臨的重要問題,研究光發(fā)酵法生物制氫技術對新能源的開發(fā)利用具有重要的現實意義。然而,光發(fā)酵法生物制氫技術面臨一些關鍵性技術瓶頸問題需要克服,如產氫效率、底物利用效率和光能轉化率較低等。光催化納米顆?衫霉饽苓M行光催化產氫,在材料領域中被較多使用。本課題將光催化和光發(fā)酵結合,以期提高光發(fā)酵產氫效率、改善底物利用率和光能轉化效率。本文研究了三種具有光催化性能的納米顆粒Ti O2、Zn O和Si C對光發(fā)酵細菌Rhodopseudomonas sp.nov.strain A7產氫的影響規(guī)律,優(yōu)選出最佳的促進產氫的納米顆粒,通過改性進一步提高其光催化能力及對光發(fā)酵細菌的底物轉化能力;并研究了三個關鍵因素即光源、光照強度和光催化納米顆粒濃度對光發(fā)酵產氫體系的影響規(guī)律;多尺度分析探討了光催化納米顆粒強化光發(fā)酵產氫的機理。納米顆粒Ti O2、Zn O和Si C在一定條件下均能不同程度地提高菌株A7的產氫能力。其中Si C在最佳濃度為200mg/L、制備溫度為1500℃時,能使光發(fā)酵細菌菌株A7獲得最大的氫氣產量、平均氫氣含量和比產氫率,分別達到2272m L-H2/L-培養(yǎng)基、85.2%和2.99 mol-H2/mol-乙酸,氫氣產量同對照相比提高18.6%。為了進一步提高光催化納米顆粒對光發(fā)酵產氫的強化效果,采用表面改性和半導體復合改性兩種方法對Si C進行改性處理,得到Si C/PAA和Si C/Fe3O4納米顆粒。結果表明:二者能夠進一步提高菌株A7的產氫性能,最佳納米顆粒濃度分別為200和100mg/L,Si C/Fe3O4納米顆粒的光催化效率較高,整體性能優(yōu)于Si C和Si C/PAA納米顆粒。當Si C/Fe3O4納米顆粒存在于體系中時,光發(fā)酵菌株A7獲得最大的氫氣產量、平均氫氣含量、比產氫率和光能轉化效率,分別為2474 m L-H2/L-培養(yǎng)基、88.9%、3.02 mol-H2/mol-乙酸和0.45%,同對照相比,氫氣產量、生物量和光能轉化效率分別提高34.4%、26%和36.4%。當采用氙燈為光源,普通玻璃厭氧瓶為反應器,最佳光照強度為100W/m2,Si C、Si C/PAA和Si C/Fe3O4的最佳濃度分別為150、150和100mg/L時,菌株A7的各項產氫指標和光能轉化效率均得到了明顯提高,其中Si C/Fe3O4對菌株A7的影響最為有利,氫氣產量、平均氫氣含量、比產氫率和光能轉化效率分別達到2464m L-H2/L-培養(yǎng)基、93.6%、3.16 mol-H2/mol-乙酸和1.06%,同對照相比,氫氣產量和光能轉化效率分別提高達34.2%和32.5%。本論文研究結果表明:光催化納米顆粒實現了對光發(fā)酵的產氫強化作用,即能夠通過提高菌株A7的凝集性能,改變細菌表面元素、官能團的種類和含量、提高固氮酶的活性、降低吸氫酶的活性、促進和加速產氫體系的電子轉移速率,進而提高體系的比產氫率和氫氣含量,提高底物利用率和光能轉化效率。
[Abstract]:At present, energy shortage is still an important problem facing the world. It is of great practical significance to study the biological hydrogen production technology of light fermenting method for the development and utilization of new energy. However, the biological hydrogen production by light fermentation is facing some key technical bottlenecks, such as hydrogen production efficiency, substrate utilization efficiency and light energy conversion rate. Photocatalytic nanoparticles are widely used in the field of materials for photocatalytic hydrogen production. In order to improve the efficiency of hydrogen production, the utilization rate of substrate and the conversion efficiency of light energy were improved by combining photocatalysis with photofermentation. In this paper, the effects of three photocatalytic nanoparticles, TIO _ 2, Zn-O and sic, on the hydrogen production of Rhodopseudomonas sp.nov.strain A _ 7 by photofermentation were studied, and the best nanocrystalline particles for hydrogen production were selected. The effects of three key factors, namely light source, light intensity and the concentration of photocatalytic nanoparticles, on the photo-fermenting hydrogen production system were studied. The mechanism of photocatalytic nanocrystalline enhanced photofermentation for hydrogen production was discussed by multi-scale analysis. The hydrogen production ability of strain A7 can be improved by nano-particles TIO _ 2 Zn-O and sic under certain conditions. When the optimum concentration of sic was 200 mg / L and the preparation temperature was 1500 鈩,
本文編號:1877038
本文鏈接:http://www.sikaile.net/kejilunwen/huagong/1877038.html
教材專著