微生物燃料電池陰極的功能拓展及機(jī)理分析
本文選題:微生物燃料電池 + 廢舊鋰電池; 參考:《合肥工業(yè)大學(xué)》2015年博士論文
【摘要】:微生物燃料電池(Microbial Fuel Cell, MFC)是燃料電池中特殊的一類,它利用微生物作為反應(yīng)主體,將燃料的化學(xué)能轉(zhuǎn)換為電能。MFC的優(yōu)勢(shì)在于其處理環(huán)境廢棄物的同時(shí)并對(duì)其中蘊(yùn)涵的能源予以回收,從而起到凈化環(huán)境和生產(chǎn)清潔能源的雙重效果。單從產(chǎn)電的角度來(lái)看,短時(shí)期內(nèi)MFC無(wú)法超越傳統(tǒng)的燃料電池的電能輸出性能。因此研究者的目光不在僅僅局限于提高電池的產(chǎn)電性能,而如何進(jìn)一步拓寬MFC處理廢棄物的領(lǐng)域,尤其是如何有效利用陰極以提高M(jìn)FC的整體功能性,從而使MFC的應(yīng)用范圍得到了進(jìn)一步地拓展。因此,本文以MFC技術(shù)為核心,結(jié)合電化學(xué)、微生物學(xué)和水文地質(zhì)學(xué)的多種研究方法,以目前常用的兩種典型MFC反應(yīng)系統(tǒng)作為研究對(duì)象,構(gòu)建了單室和雙室2種類型的矩形反應(yīng)槽,將MFC的陰極還原能力分別應(yīng)用于廢舊鋰電池正極材料LiCoO2的還原浸取和對(duì)受硝酸鹽污染地下水的原位修復(fù),以提高目標(biāo)污染物的還原效果和MFC的產(chǎn)電性能為目標(biāo),對(duì)影響MFC的陰極性能因素展開(kāi)了研究,得出了以下結(jié)論:(1)構(gòu)建了以弱酸中LiCoO2作為化學(xué)陰極電子受體的矩形式雙室MFC,探討了MFC陰極浸取還原LiCoO2的可行性,并探討了MFC陰極浸取還原LiCoO2過(guò)程中陰極液pH、陰極液的離子強(qiáng)度、固液比、催化劑CuCl2等因素對(duì)MFC的產(chǎn)電性能與LiCoO2浸取效果的影響。實(shí)驗(yàn)結(jié)果表明:MFC化學(xué)陰極還原LiCoO2使得固相中Co(Ⅲ)被浸取還原為液相中Co(Ⅱ)是可行的,且MFC的浸取效果優(yōu)于單純?nèi)跛峤?同時(shí)監(jiān)測(cè)到MFC能夠持續(xù)地輸出電壓。陰極液pH值對(duì)MFC浸取LiCoO2的過(guò)程影響顯著,pH越低,MFC的產(chǎn)電性能和LiCoO2的浸取效果越明顯;隨著陰極液中KCl和催化劑CuCl2添加濃度的增加,MFC輸出電壓和浸取效率也越高,這是由于陰極液的離子強(qiáng)度增大,活化能減少的緣故;固液比S/L的增加,電池輸出電壓和LiCoO2浸取效率也增大,但是增加的幅度與固液比的增加幅度不成正比;最后對(duì)影響MFC陰極輸出電壓和Co(Ⅱ)浸取效果的因素分析討論得出陰極液pH值是LiCoO2還原過(guò)程中重要影響因素。因此在后續(xù)的實(shí)驗(yàn)設(shè)計(jì)中要重點(diǎn)考慮pH對(duì)MFC電位和浸取效果的影響。(2)構(gòu)建了矩形式單槽生物陰極MFC,模擬受硝酸鹽污染地下水的流動(dòng)條件,對(duì)MFC進(jìn)行補(bǔ)水、排水及淋浴實(shí)驗(yàn),得到實(shí)驗(yàn)所需的水力學(xué)特征系數(shù),即砂槽含水層的孔隙度0.222,持水度0.148以及滲透系數(shù)5.13m/d,說(shuō)明建立的矩形式單槽MFC內(nèi)水流符合地下水流動(dòng)的特點(diǎn)。(3)啟動(dòng)了矩形式單槽生物陰極MFC,經(jīng)過(guò)4周期的循環(huán),電池的輸出最大電壓穩(wěn)定在500mV左右,整個(gè)啟動(dòng)時(shí)間大約需要300h。對(duì)MFC啟動(dòng)成功后運(yùn)行一段時(shí)間的陰極、陽(yáng)極與空白電極做掃描電鏡分析,陰極和陽(yáng)極附著的微生物形態(tài)不一樣,陰極碳布的纖維絲表面覆蓋了一層多孔狀結(jié)構(gòu),細(xì)菌多附著在孔狀結(jié)構(gòu)上,陽(yáng)極碳布的表面生長(zhǎng)了大量的長(zhǎng)鏈狀微生物。然而對(duì)混菌系統(tǒng)的SEM觀察,僅可作為一種輔助手段驗(yàn)證宏觀的實(shí)驗(yàn)結(jié)果。(4)在矩形式單槽生物陰極MFC穩(wěn)定運(yùn)行下,研究了影響MFC促進(jìn)硝酸鹽還原的關(guān)鍵影響參數(shù)C/N、無(wú)機(jī)碳源NaHCO3以及水力停留時(shí)間HRT對(duì)MFC的產(chǎn)電性能和硝酸鹽降解效果的影響。實(shí)驗(yàn)結(jié)果表明:C/N和無(wú)機(jī)碳源NaHCO3的增加使得MFC的輸出電壓增加,降解率也增加,亞硝酸鹽和氨氮積累效果,有助于MFC電壓的輸出;兩種水力停留時(shí)間HRT2.0d和1.0d下,MFC的輸出電壓和硝酸鹽的降解不同,HRT小反而有利于電壓輸出和硝酸鹽的降解。(5)研究了MFC反應(yīng)槽的水力梯度對(duì)MFC產(chǎn)電效果和硝酸鹽降解效果的影響。實(shí)驗(yàn)結(jié)果表明,水力梯度增大,MFC的最大輸出電壓增大,反應(yīng)槽的出口水樣中NO3--N濃度減小,NO3--N濃度也呈現(xiàn)出上層濃度大,下層濃度小,且按照水流的水平方向,前端濃度大,后端濃度小的時(shí)空分布。這說(shuō)明水力梯度的改變影響了MFC產(chǎn)電性能和硝酸鹽的降解效果。這種模擬結(jié)果更能表達(dá)水力梯度變化時(shí),地下水中硝酸鹽的遷移、轉(zhuǎn)化規(guī)律。(6)采用循環(huán)伏安曲線法掃描分析了陰極、陽(yáng)極生物膜的電化學(xué)行為。結(jié)果表明,掛膜的陽(yáng)極主要發(fā)生的是氧化反應(yīng),微生物在電極表面發(fā)生的催化氧化;掛膜的陰極發(fā)生的是還原反應(yīng),陰極微生物在電極表面發(fā)生的催化還原。反應(yīng)溶液中空白電極CV曲線上有一對(duì)明顯的氧化還原電對(duì),推測(cè)反應(yīng)溶液中存在由微生物新陳代謝分泌到細(xì)胞外的氧化還原介體,MFC體系中存在電子穿梭傳遞機(jī)制,電子傳遞的主要任務(wù)由電極上的產(chǎn)電微生物完成的。
[Abstract]:Microbial Fuel Cell (MFC) is a special kind of fuel cell. It uses microbes as the main body of reaction. The advantage of converting the chemical energy of fuel into electrical energy.MFC is to deal with environmental waste and recycle the energy contained in it, so as to purify the environment and produce clean energy. In a short period of time, MFC can not exceed the power output performance of traditional fuel cells in the short period of time. Therefore, the researchers' eyes are not only limited to improving the power production performance of the battery, but how to further broaden the field of MFC processing waste, especially how to effectively use the cathode to improve the overall function of the MFC, Thus, the application range of MFC has been further expanded. Therefore, this paper, taking MFC technology as the core, combined with a variety of research methods of electrochemistry, microbiology and hydrogeology, uses two typical typical MFC reaction systems as the research object, and constructs 2 types of rectangular reaction slots in single and double chambers, and the cathodic reduction energy of MFC The force was applied to the reduction leaching of the cathode material LiCoO2 of the waste lithium battery and the in-situ remediation of the contaminated groundwater contaminated by nitrate. In order to improve the reduction effect of the target pollutants and the electricity production performance of the MFC, the factors affecting the performance of the cathode of the MFC were studied. The following conclusions were obtained: (1) the LiCoO2 was constructed in the weak acid. A rectangular double chamber MFC of cathodic electron acceptor is studied. The feasibility of MFC cathodic reduction of LiCoO2 is discussed. The effects of MFC cathode leaching of pH, ionic strength, solid to liquid ratio, and catalyst CuCl2 on MFC in the process of LiCoO2 reduction are discussed. The experimental results show that MFC chemical cathode is used as a chemical cathode. The reduction of LiCoO2 makes the Co (III) in the solid phase reduced to Co (II) in the liquid phase, and the leaching effect of the MFC is better than that of the simple weak acid leaching. At the same time, the MFC can continuously output the voltage. The pH value of the cathode liquid has significant influence on the process of MFC leaching of LiCoO2, the lower the pH, the more obvious the performance of MFC and the LiCoO2 leaching effect; with Yin. The increase in the concentration of KCl and CuCl2 in the solution, the higher the output voltage and the leaching efficiency of MFC, is due to the increase of the ionic strength and the decrease of the activation energy, and the increase of the output voltage and the efficiency of LiCoO2 in the solid to liquid ratio, but the increase is not proportional to the increase in the ratio of solid to liquid. After the analysis of factors affecting the output voltage of MFC cathode and the effect of Co (II) leaching, it is concluded that the pH value of the cathode is an important factor in the process of LiCoO2 reduction. Therefore, the influence of pH on the MFC potential and the leaching effect should be considered in the subsequent experimental design. (2) a moment form single slot Biological Cathode MFC is constructed, and the simulation of the contaminated underground is under the nitrate pollution. The water flow conditions, the MFC water, drainage and shower experiment, get the hydraulic characteristic coefficient of the experiment, that is, the porosity of the aquifer of sand trough 0.222, the water holding degree 0.148 and the permeability coefficient 5.13m/d. It shows that the water flow in the rectangular single slot MFC conforms to the characteristics of the groundwater flow. (3) the moment form single slot Biological Cathode MFC has been started. After 4 cycles of cycle, the maximum output voltage of the battery is stable at about 500mV. The whole startup time requires about 300h. to run the cathode for a period of time after the successful start of the MFC. The anode and the blank electrode are scanned by scanning electron microscope. The microbes attached to the cathode and the anode are different, and the surface of the cathode carbon fabric is covered with a multi hole shape. A large number of long chain microbes have been grown on the surface of the anode carbon cloth. However, the SEM observation of the mixed bacteria system can only be used as a supplementary means to verify the macro experimental results. (4) the key influence of MFC on the reduction of nitrate is studied under the stable operation of the moment form single slot Biological Cathode MFC. The effect of parameter C/N, inorganic carbon source NaHCO3 and hydraulic retention time HRT on the performance of MFC and the effect of nitrate degradation. Experimental results show that the increase of C/N and inorganic carbon source NaHCO3 increase the output voltage of MFC, increase the degradation rate, the effect of nitrite and ammonia nitrogen accumulation, which is helpful to the output of MFC voltage; two kinds of hydraulic retention time. Under HRT2.0d and 1.0d, the output voltage of MFC is different from the degradation of nitrate. HRT is beneficial to the output of voltage and the degradation of nitrate. (5) the effect of the hydraulic gradient on the output of MFC and the effect of nitrate degradation in the MFC reaction tank is studied. The experimental results show that the hydraulic gradient increases, the maximum output voltage of the MFC increases, and the reaction trough is out. The concentration of NO3--N in the saliva sample decreases, and the concentration of NO3--N also shows a large upper layer concentration and lower concentration in the lower layer. In accordance with the horizontal direction of the flow, the concentration of the front end is large and the concentration of the back end is small. This indicates that the change of the hydraulic gradient affects the performance of MFC and the degradation effect of nitrate. This simulation results can express the change of hydraulic gradient more. The migration and transformation of nitrate in the groundwater. (6) the electrochemical behavior of the cathode and the anode biofilm was scanned by cyclic voltammetry. The results showed that the anode of the membrane mainly occurred oxidation, the catalytic oxidation of the microorganism on the surface of the electrode; the cathode of the hanging film was the reduction reaction, the cathode microorganism was in the electricity. Catalytic reduction of polar surfaces. There is a pair of apparent redox electric pairs on the CV curve of the blank electrode in the reaction solution. It is speculated that there is a redox mediator secreted by microorganism metabolism to the extracellular matrix in the reaction solution, and the electron shuttle transmission mechanism exists in the MFC system, and the main task of electronic delivery is the electric microorganism on the electrode. It's done.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM911.45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 連靜;馮雅麗;李浩然;劉志丹;周良;;直接微生物燃料電池的構(gòu)建及初步研究[J];過(guò)程工程學(xué)報(bào);2006年03期
2 關(guān)毅;張?chǎng)?;微生物燃料電池[J];化學(xué)進(jìn)展;2007年01期
3 洪義國(guó);郭俊;孫國(guó)萍;;產(chǎn)電微生物及微生物燃料電池最新研究進(jìn)展[J];微生物學(xué)報(bào);2007年01期
4 丁平;邵海波;劉光洲;段東霞;麻挺;陳嗣俊;王建明;張鑒清;;應(yīng)用需鹽脫硫弧菌的微生物燃料電池發(fā)電研究(英文)[J];電化學(xué);2007年02期
5 園丁;;微生物燃料電池:既處理污水又發(fā)電[J];污染防治技術(shù);2007年03期
6 劉登;劉均洪;劉海洲;;微生物燃料電池的研究進(jìn)展[J];化學(xué)工業(yè)與工程技術(shù);2007年05期
7 張廣柱;劉均洪;;微生物燃料電池研究和應(yīng)用方面的最新進(jìn)展[J];化學(xué)工業(yè)與工程技術(shù);2008年04期
8 孫健;胡勇有;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[J];工業(yè)用水與廢水;2008年01期
9 王萬(wàn)成;陶冠紅;;微生物燃料電池運(yùn)行條件的優(yōu)化[J];環(huán)境化學(xué);2008年04期
10 ;微生物燃料電池或成汽車節(jié)能環(huán)保解決方案[J];材料導(dǎo)報(bào);2008年07期
相關(guān)會(huì)議論文 前10條
1 顧忠澤;吳文果;;微生物燃料電池的研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第05分會(huì)場(chǎng)摘要集[C];2010年
2 趙峰;;來(lái)自廢水的能量-微生物燃料電池[A];2010年海峽兩岸環(huán)境與能源研討會(huì)摘要集[C];2010年
3 李正龍;劉紅;孔令才;韓梅;;可利用空間基地有機(jī)廢物的微生物燃料電池預(yù)研[A];中國(guó)空間科學(xué)學(xué)會(huì)第16屆空間生命學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
4 孫健;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(一)[C];2007年
5 趙峰;;微生物燃料電池的電子傳遞及電極反應(yīng)研究[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
6 付玉彬;;海底微生物燃料電池研究和應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
7 孔曉英;李連華;李穎;楊改秀;孫永明;;葡萄糖濃度對(duì)微生物燃料電池產(chǎn)電性能的影響[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
8 袁勇;莊莉;周順桂;;盤管式微生物燃料電池的構(gòu)建及其應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
9 喻玉立;袁用波;胡忠;;產(chǎn)電菌的選育及其在微生物燃料電池中的應(yīng)用[A];廣東省科協(xié)資助學(xué)術(shù)會(huì)議總結(jié)材料[C];2010年
10 陳禧;王煒;彭香琴;劉宇波;幸毅明;;微生物燃料電池結(jié)構(gòu)與材料研究進(jìn)展[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第八卷)[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 ;微生物燃料電池處理污水發(fā)電兩不誤[N];中國(guó)環(huán)境報(bào);2005年
2 記者 符王潤(rùn) 通訊員 曾曉舵 李潔尉 劉靜;微生物燃料電池有很大挖掘空間[N];廣東科技報(bào);2010年
3 蕭瀟;微生物燃料電池:處理污水發(fā)電兩不誤[N];中國(guó)煤炭報(bào);2005年
4 記者 毛黎;微生物燃料電池技術(shù)又推進(jìn)一步[N];科技日?qǐng)?bào);2006年
5 紀(jì)振宇;微生物燃料電池為汽車節(jié)能環(huán)保提供解決方案[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2008年
6 本報(bào)記者 趙亞平;蝦兵蟹將派上新用場(chǎng)[N];科技日?qǐng)?bào);2007年
7 張芮;希臘從芝士副產(chǎn)品中回收能源[N];中國(guó)石化報(bào);2010年
8 常麗君;高空“超級(jí)細(xì)菌”可成發(fā)電新能源[N];科技日?qǐng)?bào);2012年
9 編譯 楊孝文;微生物機(jī)器人吃蒼蠅發(fā)電[N];北京科技報(bào);2006年
10 記者 陳勇;美科學(xué)家開(kāi)發(fā)出微生物燃料電池[N];新華每日電訊;2005年
相關(guān)博士學(xué)位論文 前10條
1 黃杰勛;產(chǎn)電微生物菌種的篩選及其在微生物燃料電池中的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
2 陶琴琴;微生物燃料電池同步脫氮除磷及產(chǎn)電性能研究[D];華南理工大學(xué);2015年
3 徐磊;微生物燃料電池PB/rGO陰極材料及導(dǎo)電膜自清潔性能研究[D];大連理工大學(xué);2015年
4 臧國(guó)龍;基于微生物燃料電池的復(fù)雜廢棄物處置及光電催化制氫[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
5 代瑩;銀/鐵—碳基復(fù)合體作為微生物燃料電池陰極的性能研究[D];黑龍江大學(xué);2016年
6 龔小波;微生物燃料電池高效電極與界面設(shè)計(jì)強(qiáng)化產(chǎn)電特性研究[D];哈爾濱工業(yè)大學(xué);2016年
7 孫哲;光催化型微生物燃料電池產(chǎn)電特性及對(duì)污染物去除研究[D];東華大學(xué);2016年
8 程建萍;微生物燃料電池陰極的功能拓展及機(jī)理分析[D];合肥工業(yè)大學(xué);2015年
9 孫彩玉;基于BES污水處理—產(chǎn)能研究及微生物群落結(jié)構(gòu)解析[D];東北林業(yè)大學(xué);2016年
10 杜月;生物陰極微生物燃料電池特性及其與光催化耦合模式的研究[D];哈爾濱工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張?chǎng)?復(fù)合微生物燃料電池的研究[D];天津大學(xué);2007年
2 周秀秀;微生物燃料電池陰極催化劑雙核酞菁鈷的結(jié)構(gòu)及性能優(yōu)化[D];華南理工大學(xué);2015年
3 黃麗巧;基于微生物燃料電池技術(shù)的同步除碳、硝化/反硝化研究[D];華南理工大學(xué);2015年
4 印霞h,
本文編號(hào):1866734
本文鏈接:http://www.sikaile.net/kejilunwen/huagong/1866734.html