天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化工論文 >

基于季銨化加成型聚降冰片烯及其納米二氧化硅復合陰離子交換膜的制備與性能

發(fā)布時間:2018-04-20 11:04

  本文選題:直接甲醇燃料電池 + 陰離子交換膜; 參考:《南昌大學》2015年碩士論文


【摘要】:燃料電池作為一種環(huán)境友好型的新型可持續(xù)動力能源技術,因其能量轉換效率高、功率密度大以及較低的污染,已經(jīng)受到廣泛的關注和研究。而在其主要的燃料氫氣和甲醇中,由于甲醇在儲存和運輸上的優(yōu)勢,因此直接甲醇燃料電池(DMFC)更具有發(fā)展的前景。目前,DMFC作為一種移動便攜式的電源,已經(jīng)可以應用于一些小型的手機電池和電動車電源中。但是,DMFC也存在兩個主要的難題,一是目前研究較為成熟的質子交換膜直接甲醇燃料電池(PEMDMFC)必須使用如鉑等貴金屬材料,成本難以控制:二是甲醇在電池間的滲透率較高,質子交換膜的阻醇能力較差,易導致燃料損失從而影響電池性能。陰離子交換膜直接甲醇燃料電池(AEMDMFC)正可以有效地解決這一難題,在堿性條件下,電池陰極上O2動力學反應速度較高,因此可以使用非貴金屬催化劑從而降低成本,另外,由于堿性燃料電池中OH-的傳輸方向與甲醇滲透方向相反,一定程度上可以抑制甲醇燃料的滲透,降低甲醇滲透率。因此,其關鍵部件陰離子交換膜(AEM)已經(jīng)成為了國內外研究的熱點之一。目前陰離子交換膜作為一種電解質膜,存在著電導率和穩(wěn)定性偏低等問題,因此改善提高AEM的綜合性能對促進AEMDMFC的發(fā)展具有十分重要的意義。本論文從聚合物結構設計及摻雜改性的角度出發(fā),通過對加成型聚降冰片烯材料的功能化改性,借助其主鏈剛性雙環(huán)結構的優(yōu)點,期望制備得到具有高熱穩(wěn)定性、良好的機械性能及阻醇性能、優(yōu)異的介電性和化學穩(wěn)定性的陰離子交換膜材料。首先將側鏈含有柔性基團的5-降冰片烯-2-亞甲基庚基醚(HN)和側鏈帶胺基的功能化降冰片烯單體3-(5-降冰片烯-2-亞甲氧基)-N,N-二甲基丙胺(NA)在以雙(苯并環(huán)己酮苯亞胺)鎳(Ⅱ)為主催化劑和以B(C6F5)3為助催化劑的二元催化體系下進行加成共聚合,通過調節(jié)單體加入的摩爾量合成出不同插入率的側鏈具有后期可功能化改性的降冰片烯共聚物P(HN/NA)。該體系表現(xiàn)出較高的催化活性,且得到的共聚物分子量均較高。將得到的共聚物進行季銨化及堿性化處理并制備得到可傳導OH-的陰離子交換膜材料。制備得到的QBnP(HN/NA)膜均具有高的熱穩(wěn)定性、優(yōu)異的阻醇性能以及良好化學穩(wěn)定性和機械性能,80 oC下測得其最大的離子傳導率為3.58×10-3S/cm。再將直接帶有季銨鹽功能基團的三甲氧基硅基丙基氯化銨(TSPCA)通過溶膠凝膠的方式引入到聚降冰片烯中去,制備得到具有更高的熱穩(wěn)定性、化學穩(wěn)定性、以及更好的離子傳導能力的季銨化聚降冰片烯/納米二氧化硅(QPDN/SiO2)雜化復合陰離子交換膜。其中,QPDN/SiO2-25(TSPCA相對于純聚降冰片烯膜基質QPDN的質量分數(shù)為25%)表現(xiàn)出最好的性能,其最大離子傳導率為9.33×10-3 S/cm,甲醇滲透率2.89×10-7 cm2/s也遠低于商業(yè)化的Nafion膜(2.37×10-6cm2/s)。將QPDN/Si O2-25組裝成膜電極,在甲醇/空氣體系及80oC的條件下測得其開路電壓為0.65 V,功率密度為32 mW/m2。實驗表明,將無機納米粒子均勻地引入到聚合物基質中對膜進行摻雜改性能有效提高膜的綜合性能,通過對AEM的電導率和穩(wěn)定性的進一步優(yōu)化有望能應用于直接甲醇燃料電池中。
[Abstract]:As a new and environmentally friendly sustainable energy technology, fuel cell has been widely concerned and studied because of its high energy conversion efficiency, high power density and low pollution. In its main fuel hydrogen and methanol, the direct methanol fuel cell (DMFC) is the advantage of methanol in storage and transportation. At present, as a mobile portable power source, DMFC has been used in some small cell phone batteries and electric vehicle power sources. However, there are two major problems in DMFC. One is that the mature proton exchange membrane direct methol fuel cell (PEMDMFC) must be used as platinum and other precious metals. The cost is difficult to control: two is the high permeability between the methanol in the battery and the poor ability of the proton exchange membrane to resist alcohol, which is easy to cause the fuel loss and affect the battery performance. The anion exchange membrane direct methanol fuel cell (AEMDMFC) can effectively solve this problem. Under the alkaline condition, the O2 dynamic reaction speed on the battery cathode. Therefore, it is possible to use non precious metal catalysts to reduce the cost. In addition, because the transmission direction of OH- in basic fuel cells is contrary to the direction of methanol permeation, the permeability of methanol fuel can be suppressed to a certain extent and the permeability of methanol is reduced. Therefore, the key component of the anion exchange membrane (AEM) has become a hot research heat at home and abroad. At present, as a kind of electrolyte membrane, the anion exchange membrane has the problems of low conductivity and low stability. Therefore, it is of great significance to improve the comprehensive performance of AEM to promote the development of AEMDMFC. This paper is based on the design of polymer structure and doping modification, through the addition of polynorlene materials Functional modification, with the advantage of its main chain rigid double ring structure, is expected to prepare anionic exchange membrane materials with high thermal stability, good mechanical and alcohol resistance properties, excellent dielectric and chemical stability. First, the side chain containing the flexible group of 5-, -2- methylene heptane ether (HN) and the side chain aminopryl group The functionalized norbornene monomer 3- (5- norbornene -2- methoxy) -N, N- two methylanamine (NA) are copolymerized under the two element catalytic system with double (benzo cyclohexanone benzimide) nickel (II) catalyst and B (C6F5) 3 as the promoter, and the side chain with different insertion rates is synthesized by adjusting the molar content of the monomer. The functional modified norbornene copolymer P (HN/NA) has high catalytic activity, and the molecular weight of the copolymer is high. The obtained copolymers are prepared by quaternation and alkaline treatment and prepared to obtain the anion exchange membrane materials that can conduct the OH-. The prepared QBnP (HN/NA) films have high thermal stability. Excellent resistance to alcohol, good chemical stability and mechanical properties, the maximum ionic conductivity at 80 oC is 3.58 x 10-3S/cm., and then trimethoxy silicon propyl ammonium chloride (TSPCA) directly with quaternary ammonium salt functional groups is introduced into polynorlene through sol-gel, and a higher thermal stability is prepared. The quaternating polynorbornene / nano silica (QPDN/SiO2) hybrid anion exchange membrane has been shown to be the best performance of QPDN/SiO2-25 (TSPCA relative to the mass fraction of QPDN of the pure polycalenene membrane matrix 25%), and the maximum ionic conductivity is 9.33 x 10-3 S/cm. The alcohol permeability 2.89 x 10-7 cm2/s is also far lower than the commercialized Nafion film (2.37 x 10-6cm2/s). QPDN/Si O2-25 is assembled into a membrane electrode. The open circuit voltage is 0.65 V under the methanol / air system and 80oC, and the power density is 32 mW/m2.. The inorganic nanoparticles are evenly introduced into the polymer matrix for the film. Modification can effectively improve the comprehensive performance of the membrane. Further optimization of conductivity and stability of AEM is expected to be applied to direct methanol fuel cells.

【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ425.236;TM911.4

【參考文獻】

相關期刊論文 前1條

1 孫文華,楊海健,徐桂云,張紅江,東升魁;降冰片烯加成聚合催化劑的研究進展[J];石油化工;2004年01期

,

本文編號:1777491

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/huagong/1777491.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d3bf6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com