類離子液體電沉積制備鎂鎳及鋅鎳合金的研究
本文選題:類離子液體 切入點(diǎn):鎂鎳合金 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:鎳合金作為一種重要的戰(zhàn)略性材料,在儲(chǔ)氫性能和防腐性能領(lǐng)域有著極其重要的研究意義。電沉積法是制備鎳合金的一種重要方法,傳統(tǒng)的鎳合金電鍍主要是在含無(wú)機(jī)鹽的水溶液體系中進(jìn)行的,但普遍存在工藝復(fù)雜、成本高等問(wèn)題。類離子液體作為一種新型的綠色溶劑,其具備電化學(xué)窗口寬、液態(tài)溫度范圍大、無(wú)析氫反應(yīng)等優(yōu)良特點(diǎn),是電沉積鎳合金的優(yōu)良電解液。本文采用成本低廉、合成簡(jiǎn)單的芐基三乙基氯化銨-丙三醇-氯化鎳-氯化鎂(TEBAC-GL-NiCl_2-MgCl_2)類離子液體和氯化膽堿-尿素-乙二醇-氧化鎳-氧化鋅(ChCl-urea-EG-Ni_2O_3-ZnO)類離子液體作為電解質(zhì),進(jìn)行電沉積制備鎂鎳合金和鋅鎳合金的研究實(shí)驗(yàn)。采用TEBAC-GL-NiCl_2-MgCl_2類離子液體為電解液,以銅片為陰極、石墨片為陽(yáng)極,成功地制備出了顆粒尺寸均勻且鍍層致密平整的鎂鎳合金鍍層。采用循環(huán)伏安法、計(jì)時(shí)電流法等多種電化學(xué)測(cè)試手段,系統(tǒng)地研究了 Ni和Mg-Ni合金在該體系中的電沉積行為,并運(yùn)用XRF、XRD、SEM等檢測(cè)手段對(duì)鍍層的成分、形貌進(jìn)行分析。結(jié)果表明:隨著溫度的升高,該類離子液體的電導(dǎo)率顯著增大;在TEBAC-GL-NiCl_2體系中加入MgCl_2后,循環(huán)伏安曲線中的還原電流明顯增大,表明可能實(shí)現(xiàn)Mg和Ni的共沉積;當(dāng)Mg~(2+)濃度為0.005mol/L,Ni~(2+)濃度為0.1mol/L時(shí),在塔菲爾曲線中Mg和Ni的平衡電位差值最小,為1.2532V;以玻碳電極為工作電極時(shí),Ni和Mg-Ni合金在類離子液體中的電沉積屬于三維瞬時(shí)形核模型;當(dāng)槽電壓為2.3V、溫度為353K、鎂離子和鎳離子摩爾濃度均為0.1 mol·L~(-1)時(shí),沉積層中鎂的含量最高,其質(zhì)量分?jǐn)?shù)為12.13%。采用ChCl-urea-EG-Ni_2O_3-ZnO類離子液體為電解液,在以鍍銅鐵片為工作電極、鉑電極為對(duì)電極、高純銀絲為參比電極的三電極體系中,采用恒電位電沉積制備出了顆粒尺寸均勻且鍍層致密平整的Zn-Ni合金鍍層。采用循環(huán)伏安法、塔菲爾曲線測(cè)試等多種電化學(xué)測(cè)試手段,系統(tǒng)地研究了 Ni、Zn和Zn-Ni合金在該體系中的電沉積行為,并運(yùn)用XRF、XRD、SEM等檢測(cè)手段對(duì)鍍層的成分、形貌進(jìn)行分析。結(jié)果表明:Ni(Ⅱ)的加入導(dǎo)致ChCl-urea-EG-ZnO體系中循環(huán)伏安曲線的起始還原電位正移,形核過(guò)電位增大,在正掃的過(guò)程中Zn的氧化峰發(fā)生了正移,因此,形成了鋅鎳合金;溫度為353K、Ni_2O_3為5g/L、ZnO為2g/L,沉積電位為-1.3V時(shí),可以得到耐腐蝕性能相對(duì)最好的Zn0.85Ni0.15合金鍍層;在-1.3V沉積得到的Zn0.85Ni0.15合金的腐蝕電流最小,為0.4μA/cm2,腐蝕電位為-934mV,其耐腐蝕性能最好;Zn0.85Ni0.15合金鍍層在Nyquist圖譜的高頻區(qū)表現(xiàn)出最大的容抗弧半圓直徑,由于其具有最大的R_(ct),因此其具有最高的極化電阻。
[Abstract]:As an important strategic material, nickel alloy is of great significance in the field of hydrogen storage and corrosion resistance. Electrodeposition is an important method for the preparation of nickel alloy. Traditional nickel alloy electroplating is mainly carried out in aqueous solution system containing inorganic salt, but the process is complex and the cost is high. As a new kind of green solvent, ionic liquid has wide electrochemical window. Due to its wide range of liquid temperature and no hydrogen evolution reaction, it is an excellent electrolyte for electrodeposition of nickel alloy. Synthesis of simple benzyl triethylammonium chloride, propanetriol, nickel chloride, magnesium chloride, TEBAC-GL-NiCl2-MgCl _ 2) ionic liquids and choline chloride, urea-glycol, nickel oxide, zinc oxide, chCl-urea-EG-Ni2O3-ZnO ionic liquids as electrolytes, The preparation of magnesium-nickel alloy and zinc-nickel alloy by electrodeposition was studied. TEBAC-GL-NiCl_2-MgCl_2 ionic liquid was used as electrolyte, copper as cathode and graphite as anode. The electrodeposition behavior of Ni and Mg-Ni alloys in this system has been systematically studied by cyclic voltammetry and chronoamperometric method, and the electrodeposition behavior of Ni and Mg-Ni alloys in this system has been systematically studied by means of cyclic voltammetry and chronoamperometry. The composition and morphology of the coating were analyzed by means of X-ray diffraction SEM. The results showed that the conductivity of this kind of ionic liquids increased significantly with the increase of temperature, and MgCl_2 was added to the TEBAC-GL-NiCl_2 system. The reduction current in the cyclic voltammetry curve is obviously increased, which indicates that the codeposition of mg and Ni is possible, and when the concentration of Mg~(2 is 0.005 mol / L, the equilibrium potential difference between mg and Ni is the smallest in the Taffel curve, when the concentration of Mg~(2 is 0.005 mol / L, and the concentration of Ni is 0.1 mol / L, the equilibrium potential difference between mg and Ni in the Taffel curve is the smallest. Using glassy carbon electrode as working electrode, the electrodeposition of Ni and Mg-Ni alloys in ionic liquids belongs to a three-dimensional instantaneous nucleation model, when the cell voltage is 2.3 V, the temperature is 353K, and the molar concentrations of magnesium and nickel ions are 0.1 mol 路L ~ (-1), respectively. The content of magnesium in the deposit layer is the highest, the mass fraction of which is 12.13.The ChCl-urea-EG-Ni_2O_3-ZnO ionic liquid is used as electrolyte, in the three-electrode system with copper plating iron sheet as working electrode, platinum electrode as opposite electrode, and high purity silver wire as reference electrode, The Zn-Ni alloy coating with uniform particle size and dense and flat coating was prepared by potentiostatic electrodeposition, and many electrochemical methods, such as cyclic voltammetry and Taffel curve test, were used. The electrodeposition behavior of Nianzn and Zn-Ni alloys in this system was systematically studied, and the composition of the coating was examined by means of XRF, XRD, SEM and so on. The results showed that the initial reduction potential of cyclic voltammetry curve in ChCl-urea-EG-ZnO system was positively shifted, the nucleation overpotential increased, and the oxidation peak of Zn occurred positive shift in the process of forward sweep. Therefore, the zinc-nickel alloy was formed. At a temperature of 353K / Ni2O3 of 5g / L, with a deposition potential of -1.3V, the Zn0.85Ni0.15 alloy coating with the best corrosion resistance can be obtained, and the Zn0.85Ni0.15 alloy deposited at -1.3V has the lowest corrosion current. The corrosion potential is -934mV, and the corrosion resistance of Zn0.85Ni0.15 alloy coating is the highest in the high frequency region of Nyquist. Because of its maximum RSCT, the alloy coating has the highest polarization resistance. The corrosion potential is -934mV, and the corrosion potential is -934mV. the corrosion resistance of Zn0.85Ni0.15 alloy coating is the highest in the high frequency region of Nyquist.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ153.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛東朋;徐霸津;陳益明;張仇;凌國(guó)平;;AlCl_3-EMIC離子液體電沉積光亮Al和Al-Mn鍍層[J];化工學(xué)報(bào);2015年S1期
2 凌國(guó)平;陳益明;;離子液體電沉積及其應(yīng)用[J];熱處理技術(shù)與裝備;2013年06期
3 李義田;;淺談合金電鍍以及其發(fā)展趨勢(shì)[J];價(jià)值工程;2013年24期
4 喬小平;李鶴林;趙文軫;;Zn-Ni合金防腐涂層技術(shù)研究進(jìn)展[J];中國(guó)表面工程;2011年05期
5 郝澤銘;宋師偉;陳沖;鄧姝皓;;Mg-Ni合金的電沉積研究[J];礦冶工程;2011年05期
6 范士鋒;;金屬儲(chǔ)氫材料研究進(jìn)展[J];化學(xué)推進(jìn)劑與高分子材料;2010年02期
7 蘇立峰;李亞瓊;吳開(kāi)基;殷韌;郭之號(hào);翟秀靜;符巖;李斌川;;離子液體1-丁基-3-甲基咪唑-氯鋁酸鹽體系的電化學(xué)研究[J];材料與冶金學(xué)報(bào);2009年02期
8 張曉燕;劉衛(wèi)紅;;N,N-二甲基甲酰胺中電沉積制備鎂鎳儲(chǔ)氫合金[J];化學(xué)學(xué)報(bào);2007年07期
9 劉文斌;徐光亮;賈志華;;氫化燃燒合成鎂基貯氫合金的研究進(jìn)展[J];粉末冶金技術(shù);2005年06期
10 劉衛(wèi)紅,廖龍標(biāo);水溶液中鎂-鎳合金的電沉積合成[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2004年04期
相關(guān)博士學(xué)位論文 前2條
1 張敏;α-Al_2O_3/Al-Cr合金涂層的低溫制備及相關(guān)機(jī)理研究[D];浙江大學(xué);2015年
2 潘劍靈;無(wú)氰共沉積電鍍Au-Sn共晶合金工藝及其性能研究[D];大連理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 李富宇;離子液體電沉積鋅鎳及鋅鎂合金的研究[D];昆明理工大學(xué);2015年
2 范偉博;鎂合金表面超疏水化及耐腐蝕性能研究[D];蘭州交通大學(xué);2014年
3 趙霽雯;BMIC-GL離子液體電沉積鎂鎳合金的電化學(xué)研究[D];昆明理工大學(xué);2014年
4 丁晶晶;稀土磁性材料離子液體電沉積鋁錳合金及其性能研究[D];浙江大學(xué);2014年
5 劉亞偉;離子液體中鈦鋁合金的電沉積研究[D];昆明理工大學(xué);2010年
6 張凱;離子液體的制備、表征及其電化學(xué)研究[D];西北師范大學(xué);2009年
7 王曉強(qiáng);電沉積Ni-W-P合金及Fe-Ni/Ni-W-P雙層合金的性能和應(yīng)用[D];湖南大學(xué);2008年
8 田偉;鋅鎳合金電鍍工藝及性能研究[D];西北工業(yè)大學(xué);2004年
,本文編號(hào):1583054
本文鏈接:http://www.sikaile.net/kejilunwen/huagong/1583054.html