天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

大型飛機(jī)壁板裝配變形控制與校正技術(shù)研究

發(fā)布時間:2019-03-16 19:16
【摘要】:飛機(jī)裝配作為飛機(jī)制造過程中最重要、最復(fù)雜的環(huán)節(jié)之一,直接決定了飛機(jī)產(chǎn)品的最終性能、質(zhì)量和壽命,而壁板作為飛機(jī)的重要組件之一,其裝配精度將直接影響飛機(jī)各部件間的相互協(xié)調(diào)性和整機(jī)的外形準(zhǔn)確度,如何有效控制壁板裝配變形是目前我國航空工業(yè)亟需解決和攻克的技術(shù)難題之一。論文從壁板支撐布局優(yōu)化、檢測點(diǎn)布置優(yōu)化、壁板變形預(yù)測與校正等層面展開系統(tǒng)深入研究,從而為實現(xiàn)壁板裝配變形的科學(xué)有效調(diào)控提供行之有效的解決方法。主要研究內(nèi)容包括:闡述了論文的研究背景及意義,介紹了國內(nèi)外飛機(jī)數(shù)字化裝配技術(shù)的發(fā)展現(xiàn)狀,指出大型飛機(jī)壁板變形控制與校正技術(shù)是當(dāng)前飛機(jī)數(shù)字化裝配中的重點(diǎn)和難點(diǎn)之一。為提高飛機(jī)壁板在數(shù)字化裝配中的剛度,提出了一種基于多工藝接頭的壁板支撐布局優(yōu)化方法,通過建立壁板與工藝接頭的有限元模型,利用混合均勻試驗設(shè)計法,得到在不同工藝接頭支撐布局下的壁板應(yīng)變能,同時根據(jù)偏最小二乘回歸分析法,建立了壁板應(yīng)變能與工藝接頭支撐參數(shù)之間的數(shù)學(xué)模型,從而實現(xiàn)工藝接頭支撐布局優(yōu)化,并分析比較了壁板在全保形工裝支撐和工藝接頭支撐下的變形情況。在數(shù)字化裝配中,飛機(jī)壁板的位置和姿態(tài)精度通過檢測點(diǎn)的理論和實際位置進(jìn)行匹配計算得到,而其變形也可由檢測點(diǎn)的位置誤差進(jìn)行描述。因此,合理布置壁板上的檢測點(diǎn)就尤為重要。為能更全面地描述壁板變形,更多地涵蓋壁板變形信息,提出了一種基于D-Optimality和自適應(yīng)模擬退火遺傳算法的飛機(jī)壁板檢測點(diǎn)優(yōu)化布置方法,通過最小化壁板變形的估計誤差,實現(xiàn)從一系列初始待選點(diǎn)中優(yōu)選出指定數(shù)量的檢測點(diǎn)。在大型飛機(jī)機(jī)身部件的數(shù)字化裝配過程中,數(shù)控定位器被廣泛應(yīng)用于機(jī)身壁板的定位、支撐,但機(jī)身壁板的弱剛度和低強(qiáng)度容易造成自身裝配變形過大、裝配精度超差。為控制壁板變形,首先構(gòu)建了飛機(jī)壁板的有限元模型,同時利用正交仿真試驗研究了壁板在數(shù)控定位器移動牽引過程中產(chǎn)生的變形特性,并獲取了描述壁板變形的檢測點(diǎn)位置誤差數(shù)據(jù),然后應(yīng)用偏最小二乘回歸分析方法,建立了數(shù)控定位器位移數(shù)據(jù)與檢測點(diǎn)位置誤差數(shù)據(jù)之間的反演計算模型,并利用該模型實現(xiàn)對壁板變形的準(zhǔn)確預(yù)測和校正。為驗證飛機(jī)壁板支撐布局優(yōu)化、裝配變形校正等方法的正確性,設(shè)計并搭建了相應(yīng)的壁板定位調(diào)姿試驗系統(tǒng),并在此基礎(chǔ)上安排了一系列試驗研究,進(jìn)一步驗證了相關(guān)方法的可靠性。最后,總結(jié)了全文的研究內(nèi)容,并對有待進(jìn)一步研究的內(nèi)容進(jìn)行了展望。
[Abstract]:Aircraft assembly, as one of the most important and complicated links in the aircraft manufacturing process, directly determines the final performance, quality and life of the aircraft product, and the wallboard is one of the important components of the aircraft. The assembly accuracy will directly affect the compatibility of the aircraft components and the shape accuracy of the whole machine. How to effectively control the panel assembly deformation is one of the technical problems urgently needed to be solved and solved in the aviation industry of our country at present. In this paper, a systematic and in-depth study is carried out from the aspects of panel support layout optimization, detection point layout optimization, panel deformation prediction and correction, and so on, so as to provide an effective solution for the scientific and effective regulation and control of panel assembly deformation. The main research contents are as follows: the research background and significance of this paper are expounded, and the development status of aircraft digital assembly technology at home and abroad is introduced. It is pointed out that the deformation control and correction technology of large aircraft panels is one of the key points and difficulties in the digital assembly of aircraft. In order to improve the stiffness of aircraft panel in digital assembly, an optimization method of panel support layout based on multi-process joints is proposed. The finite element model of panel and process joint is established, and the mixed uniform test design method is used. At the same time, according to the partial least square regression analysis, the mathematical model between the wall strain energy and the supporting parameters of the process joint is established, so as to realize the optimization of the supporting layout of the process joint. The deformation of wall plate under full conformal tool support and process joint support is analyzed and compared. In digital assembly, the position and attitude accuracy of the plane wall panel is calculated by matching the theory and actual position of the detection point, and the deformation can also be described by the position error of the detection point. Therefore, it is particularly important to arrange the detection points on the panel reasonably. In order to describe the panel deformation more comprehensively and to cover more information of panel deformation, an optimal placement method of aircraft panel detection points based on D-Optimality and adaptive simulated annealing genetic algorithm is proposed, which minimizes the estimation error of panel deformation. Select a specified number of detection points from a series of initial points to be selected. In the process of digital assembly of large aircraft fuselage parts, NC locators are widely used to locate and support the fuselage panels. However, the weak stiffness and low strength of the fuselage panels can easily lead to excessive assembly deformation and poor assembly accuracy. In order to control the deformation of the panel, the finite element model of the aircraft panel is constructed firstly. At the same time, the deformation characteristics of the panel during the moving traction of the NC locator are studied by the orthogonal simulation experiment. The position error data of the detection point describing the deformation of the panel are obtained, and then the inverse calculation model between the displacement data of the NC locator and the position error data of the detection point is established by using the partial least square regression analysis method. The model is used to predict and correct the wall plate deformation accurately. In order to verify the correctness of aircraft panel support layout optimization, assembly deformation correction and other methods, the corresponding panel positioning attitude adjustment test system is designed and built, and a series of experimental studies are arranged on this basis. The reliability of the related methods is further verified. Finally, the research contents of this paper are summarized, and the further research contents are prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V262.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李薇;數(shù)字化技術(shù)在飛機(jī)裝配中的應(yīng)用研究[J];航空制造技術(shù);2004年08期

2 樓阿莉;國內(nèi)外自動鉆鉚技術(shù)的發(fā)展現(xiàn)狀及應(yīng)用[J];航空制造技術(shù);2005年06期

3 任曉華;;洛克希德·馬丁公司的F-22戰(zhàn)斗機(jī)裝配生產(chǎn)線[J];航空制造技術(shù);2006年08期

4 鄒方;薛漢杰;周萬勇;許國康;;飛機(jī)數(shù)字化柔性裝配關(guān)鍵技術(shù)及其發(fā)展[J];航空制造技術(shù);2006年09期

5 張輝;;飛機(jī)裝配設(shè)備及供應(yīng)商一覽[J];航空制造技術(shù);2008年11期

6 許國康;;飛機(jī)總裝移動生產(chǎn)線技術(shù)[J];航空制造技術(shù);2008年20期

7 孫杰;李劍峰;王中秋;宋良煜;何勇;;航空整體結(jié)構(gòu)件加工變形控制與校正關(guān)鍵技術(shù)[J];航空制造技術(shù);2009年23期

8 陳紹文;王舸;孫珞珈;;精益制造和飛機(jī)移動式裝配線[J];航空制造技術(shù);2011年16期

9 武美萍,廖文和;面向直升機(jī)研發(fā)的數(shù)字化預(yù)裝配技術(shù)的算法及應(yīng)用研究[J];機(jī)械科學(xué)與技術(shù);2005年04期

10 張斌;方強(qiáng);柯映林;;大型剛體調(diào)姿系統(tǒng)最優(yōu)時間軌跡規(guī)劃[J];機(jī)械工程學(xué)報;2008年08期



本文編號:2441890

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/2441890.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶79314***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com