衛(wèi)星編隊(duì)飛行隊(duì)形控制的參數(shù)化方法
發(fā)布時(shí)間:2018-06-04 00:26
本文選題:衛(wèi)星編隊(duì) + 隊(duì)形控制; 參考:《哈爾濱工業(yè)大學(xué)》2016年碩士論文
【摘要】:隨著航天技術(shù)的迅猛發(fā)展,對(duì)衛(wèi)星功能的要求越來越高,由多顆小衛(wèi)星編隊(duì)飛行共同實(shí)現(xiàn)一個(gè)空間任務(wù)的研究成為了空間技術(shù)發(fā)展的新方向。而編隊(duì)衛(wèi)星間的相對(duì)位置滿足一定要求時(shí),才能確保各項(xiàng)任務(wù)的順利完成。因此衛(wèi)星編隊(duì)飛行隊(duì)形控制是編隊(duì)飛行中的一項(xiàng)關(guān)鍵技術(shù)。本文主要研究了編隊(duì)衛(wèi)星隊(duì)形保持與隊(duì)形重構(gòu)控制的參數(shù)化方法,并進(jìn)行了仿真驗(yàn)證。首先,在參考星軌道坐標(biāo)系下,建立了衛(wèi)星編隊(duì)相對(duì)運(yùn)動(dòng)的非線性動(dòng)力學(xué)方程,將非線性方程線性化得到適用于橢圓參考軌道的Lawden方程和適用于圓參考軌道的C-W方程。給出了基于小偏心率參考軌道設(shè)計(jì)的幾種典型編隊(duì)構(gòu)型的運(yùn)動(dòng)學(xué)描述。然后對(duì)破壞編隊(duì)構(gòu)型的主要因素—2J項(xiàng)攝動(dòng)進(jìn)行分析,推導(dǎo)出編隊(duì)衛(wèi)星相對(duì)2J項(xiàng)攝動(dòng)加速度的表達(dá)式。最后通過仿真分析2J項(xiàng)攝動(dòng)對(duì)空間圓繞飛構(gòu)型的影響。其次,給出了衛(wèi)星編隊(duì)隊(duì)形保持控制問題的描述,將隊(duì)形保持問題視為對(duì)期望相對(duì)位置的軌跡跟蹤問題,將相對(duì)運(yùn)動(dòng)的動(dòng)力學(xué)方程和化為誤差方程,進(jìn)而將編隊(duì)衛(wèi)星隊(duì)形的軌跡跟蹤控制問題轉(zhuǎn)化為以誤差為狀態(tài)變量的系統(tǒng)的鎮(zhèn)定問題。分別基于(1)非線性動(dòng)力學(xué)方程和全驅(qū)的二階系統(tǒng)特征結(jié)構(gòu)配置的參數(shù)化方法和(2)Lawden方程和一階系統(tǒng)特征結(jié)構(gòu)配置的參數(shù)化方法,設(shè)計(jì)了系統(tǒng)的反饋鎮(zhèn)定控制器。其中,采用第二種設(shè)計(jì)思路分別設(shè)計(jì)了系統(tǒng)的全向推力反饋鎮(zhèn)定控制器和無x軸方向控制的反饋鎮(zhèn)定控制器。給出了燃耗與狀態(tài)誤差綜合的性能指標(biāo),用非線性規(guī)劃方法對(duì)控制器中的參數(shù)進(jìn)行優(yōu)化,使閉環(huán)系統(tǒng)滿足性能要求。對(duì)空間圓繞飛構(gòu)型和懸停伴飛構(gòu)型兩種情形進(jìn)行數(shù)值仿真,對(duì)基于兩種思路設(shè)計(jì)的控制器進(jìn)行比較分析,并且驗(yàn)證了在2J項(xiàng)攝動(dòng)的影響下隊(duì)形保持控制器的有效性。最后,采用一種分層控制結(jié)構(gòu),將隊(duì)形重構(gòu)控制分為軌跡規(guī)劃和軌跡跟蹤控制兩部分,并給出了衛(wèi)星編隊(duì)隊(duì)形重構(gòu)控制問題的描述。利用Radau偽譜法將連續(xù)系統(tǒng)的最優(yōu)控制問題轉(zhuǎn)化為一個(gè)非線性規(guī)劃問題,通過求解這一非線性規(guī)劃問題得到最優(yōu)控制與最優(yōu)軌跡的數(shù)值解。然后基于模型參考輸出跟蹤理論,推導(dǎo)了線性時(shí)變系統(tǒng)軌跡跟蹤前饋控制器的求解方法,該方法設(shè)計(jì)的前饋控制器只需利用期望的相對(duì)位置和相對(duì)速度信息,并通過數(shù)值仿真對(duì)軌跡規(guī)劃和控制方法進(jìn)行驗(yàn)證。
[Abstract]:With the rapid development of space technology, the requirement of satellite function is becoming higher and higher. The research of realizing a space mission by multiple small satellites formation flying has become a new direction of space technology development. Only when the relative position of satellites meets certain requirements can the tasks be completed smoothly. Therefore, formation control of satellite formation flying is a key technology in formation flying. In this paper, the parameterization method of formation maintenance and formation reconfiguration control of formation satellites is studied, and the simulation is carried out. Firstly, the nonlinear dynamic equations of relative motion of satellite formation are established in the reference orbit coordinate system. The nonlinear equations are linearized to obtain the Lawden equation for elliptical reference orbits and the C-W equation for circular reference orbits. The kinematics description of several typical formation configurations based on the design of small eccentricity reference orbit is given. Then the perturbation of -2J term which is the main factor of destroying formation configuration is analyzed and the expression of perturbation acceleration of formation satellite relative to 2J term is deduced. Finally, the effect of 2J term perturbation on the configuration of space circular annulus is analyzed by simulation. Secondly, the control problem of satellite formation maintenance is described. The formation holding problem is regarded as the trajectory tracking problem of the desired relative position, and the dynamic equation of relative motion is added to the error equation. Then the trajectory tracking control problem of formation satellite formation is transformed into the stabilization problem of the system with error as the state variable. The feedback stabilization controller is designed based on the nonlinear dynamic equations and the parameterized method of eigenstructure collocation for the second order system with full drive, the Lawden equation for the second order and the parameterization method for the eigenstructure configuration of the first order system, respectively. The second design idea is used to design the omnidirectional thrust feedback stabilization controller and the non-x axis control feedback stabilization controller respectively. The performance index of burnup and state error synthesis is given, and the parameters in the controller are optimized by nonlinear programming method, so that the closed-loop system can meet the performance requirements. In this paper, numerical simulation is carried out on the spatial circular around flight configuration and hovering wake configuration. The controller based on the two ideas is compared and analyzed, and the effectiveness of the formation holding controller under the influence of 2J perturbation is verified. Finally, a hierarchical control structure is used to divide the formation reconfiguration control into two parts: trajectory planning and trajectory tracking control, and the problem of satellite formation reconfiguration control is described. The Radau pseudospectral method is used to transform the optimal control problem of continuous systems into a nonlinear programming problem. The numerical solution of the optimal control and optimal trajectory is obtained by solving the nonlinear programming problem. Then, based on the model reference output tracking theory, the solution of the trajectory tracking feedforward controller for linear time-varying systems is derived. The feedforward controller designed by this method only needs to use the desired relative position and relative velocity information. The trajectory planning and control methods are verified by numerical simulation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V448.2
,
本文編號(hào):1974944
本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/1974944.html
最近更新
教材專著