空間交會(huì)近程導(dǎo)引段的滑模變結(jié)構(gòu)控制
發(fā)布時(shí)間:2018-03-27 20:52
本文選題:空間交會(huì) 切入點(diǎn):變結(jié)構(gòu)控制 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:空間交會(huì)是一項(xiàng)廣泛應(yīng)用于在軌服務(wù)、在軌裝配與編隊(duì)飛行等復(fù)雜航天任務(wù)的基礎(chǔ)性技術(shù),由于其中的控制問(wèn)題是保證自主交會(huì)成功的關(guān)鍵而吸引了許多研究者們的關(guān)注。在研究空間交會(huì)控制問(wèn)題時(shí)會(huì)受到許多現(xiàn)實(shí)工程因素的制約,如在軌航天器除受中心引力作用外還會(huì)受到許多外部攝動(dòng)力的作用,航天器執(zhí)行機(jī)構(gòu)的故障與時(shí)變特性等;W兘Y(jié)構(gòu)控制是一種具有強(qiáng)魯棒性的非線性控制;相比于其他控制方法,滑模控制在抑制或消除模型不確定性與外部擾動(dòng)上具有很強(qiáng)的能力。因而本學(xué)位論文的主要內(nèi)容是利用滑模變結(jié)構(gòu)控制理論在考慮必要工程約束的情況下提出適用于航天器自主交會(huì)的控制方案,F(xiàn)實(shí)中絕大多數(shù)空間交會(huì)的參考軌道呈近圓形,因而本文將著重研究近圓軌道上航天器自主交會(huì)的控制方法。在動(dòng)力學(xué)建模部分,本文由含攝動(dòng)的非線性二體模型出發(fā),通過(guò)拉格朗日與泰勒級(jí)數(shù)展開(kāi)進(jìn)行線性化,在并保留關(guān)于參考軌道偏心率的一階展開(kāi)項(xiàng)后得到用于描述近圓軌道空間交會(huì)的動(dòng)力學(xué)模型,其中參考軌道的非圓性與兩航天器所受攝動(dòng)力的差值分別以時(shí)變參數(shù)項(xiàng)與外部擾動(dòng)項(xiàng)的形式存在與模型中。針對(duì)存在攝動(dòng)力擾動(dòng)與執(zhí)行器飽和的空間交會(huì),本文提出一種固定增益滑模抗飽和控制器,利用滑?刂埔种仆獠繑_動(dòng),通過(guò)固定增益避免推力器陷入飽和。此后針對(duì)執(zhí)行器輸出上限時(shí)變的情形,提出一種增益自適應(yīng)滑?癸柡涂刂破,利用白適應(yīng)的控制器增益避免了固定增益控制器由于預(yù)設(shè)增益過(guò)小造成的執(zhí)行器性能浪費(fèi)或過(guò)大引起的執(zhí)行器飽和。針對(duì)存在攝動(dòng)力擾動(dòng)與推進(jìn)系統(tǒng)故障的空間交會(huì),本文提出一種復(fù)合型魯棒容錯(cuò)控制方案。該方案由積分滑模輔助控制器與魯棒容錯(cuò)保性能控制器復(fù)合而成。其中,積分滑模輔助控制器能夠消除攝動(dòng)模型中的外部擾動(dòng)項(xiàng)并對(duì)推力器故障具有容錯(cuò)能力,魯棒容錯(cuò)保性能控制律則能夠以最小成本鎮(zhèn)定含故障及時(shí)變參數(shù)的空間交會(huì)標(biāo)稱(chēng)系統(tǒng)。在含有攝動(dòng)的非線性二體模型中,本文對(duì)固定增益與增益自適應(yīng)滑模抗飽和控制器以及獨(dú)立魯棒容錯(cuò)保性能與復(fù)合魯棒容錯(cuò)控制器進(jìn)行了對(duì)比仿真。仿真結(jié)果顯示,增益自適應(yīng)控制器與復(fù)合魯棒容錯(cuò)控制器較其余控制器在航天器自主交會(huì)任務(wù)中具有穩(wěn)定性好、收斂速度快以及能量消耗小等優(yōu)點(diǎn)。
[Abstract]:Space rendezvous is a basic technology widely used in complex space missions such as in-orbit service, in-orbit assembly and formation flying. Since the control problem is the key to ensure the success of autonomous rendezvous, it has attracted the attention of many researchers. In studying the control problem of space rendezvous, it will be restricted by many practical engineering factors. For example, the in-orbit spacecraft will also be subjected to many external perturbation forces in addition to the central gravity force, and the fault and time-varying characteristics of the spacecraft actuator, etc. Sliding mode variable structure control is a nonlinear control with strong robustness. Compared with other control methods, Sliding mode control has a strong ability to suppress or eliminate model uncertainty and external disturbance. Therefore, the main content of this dissertation is to use sliding mode variable structure control theory to propose a suitable method considering the necessary engineering constraints. Control scheme for spacecraft autonomous rendezvous. In reality, most of the reference orbits of space rendezvous are nearly circular. Therefore, this paper will focus on the control method of spacecraft autonomous rendezvous in near-circular orbit. In the part of dynamics modeling, the nonlinear two-body model with perturbation is linearized by Lagrangian and Taylor series expansion. After preserving the first-order expansion term of the reference orbit eccentricity, a dynamic model for describing the space rendezvous of the near-circular orbit is obtained. The difference between the non-circularity of the reference orbit and the perturbation force of the two spacecraft is in the form of time-varying parameter term and external disturbance term, respectively. In this paper, a fixed-gain sliding mode anti-saturation controller is proposed. The sliding mode control is used to suppress the external disturbance and to avoid the thruster falling into saturation through the fixed gain. A gain adaptive sliding mode anti-saturation controller is proposed. The white adaptive controller gain is used to avoid the actuator saturation caused by the fixed gain controller which is caused by too small preset gain. In view of the spatial rendezvous between the perturbed disturbance and the propulsion system fault, the performance of the actuator is wasted or too large due to the presupposition gain. In this paper, a composite robust fault-tolerant control scheme is proposed, which is composed of an integral sliding mode auxiliary controller and a robust fault-tolerant guaranteed cost controller. The integral sliding mode auxiliary controller can eliminate the external disturbance in the perturbation model and has fault tolerance ability to the thruster fault. Robust fault-tolerant guaranteed cost control law can stabilize space rendezvous nominal systems with fault and time-varying parameters at minimum cost. In this paper, the fixed gain and gain adaptive sliding mode anti-saturation controller and independent robust fault-tolerant guaranteed cost controller and composite robust fault-tolerant controller are compared and simulated. The gain adaptive controller and the composite robust fault-tolerant controller have the advantages of better stability, faster convergence speed and less energy consumption than the other controllers in the autonomous rendezvous mission.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V526;V448.2
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前1條
1 盧偉;在軌服務(wù)航天器與失控目標(biāo)交會(huì)對(duì)接的相對(duì)位姿耦合控制[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):1673212
本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/1673212.html
最近更新
教材專(zhuān)著