大直徑薄壁箱體結(jié)構(gòu)力學(xué)分析與精細(xì)優(yōu)化設(shè)計(jì)
發(fā)布時(shí)間:2018-03-22 00:07
本文選題:過(guò)渡環(huán) 切入點(diǎn):三心底 出處:《大連理工大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:我國(guó)目前正在研制新一代運(yùn)載火箭貯箱結(jié)構(gòu),未來(lái)還將研制重型運(yùn)載火箭貯箱結(jié)構(gòu)。隨著結(jié)構(gòu)尺度不斷增加,結(jié)構(gòu)尺寸效應(yīng)更加明顯,輕量化要求更高,傳統(tǒng)的設(shè)計(jì)思路和方法已不能滿(mǎn)足要求,在結(jié)構(gòu)設(shè)計(jì)中需要更精細(xì)化的設(shè)計(jì)思路和量化控制手段。本文對(duì)大直徑貯箱典型結(jié)構(gòu)開(kāi)展力學(xué)性能分析與優(yōu)化設(shè)計(jì),具體內(nèi)容如下:1.針對(duì)某大直徑貯箱Y形過(guò)渡環(huán)進(jìn)行強(qiáng)度分析與精細(xì)優(yōu)化設(shè)計(jì)。首先探討過(guò)渡環(huán)與筒段焊縫連接處內(nèi)外側(cè)應(yīng)力差過(guò)大的原因,然后研究Y形環(huán)和筒段形貌對(duì)焊縫及熱影響區(qū)應(yīng)力分布的影響規(guī)律。最后基于參數(shù)優(yōu)化和形狀優(yōu)化的協(xié)同優(yōu)化策略,利用ISIGHT多學(xué)科優(yōu)化軟件集成有限元分析軟件ABAQUS搭建優(yōu)化平臺(tái),基于該平臺(tái)的最終優(yōu)化結(jié)果可以有效地改善Y形環(huán)和筒段焊縫連接處的應(yīng)力水平,提高貯箱的承載能力。2.針對(duì)大直徑貯箱三心底的應(yīng)力狀態(tài)和內(nèi)壓穩(wěn)定性進(jìn)行研究。首先通過(guò)理論分析、有限元計(jì)算和試驗(yàn)測(cè)試探討三心底的應(yīng)力變化規(guī)律,并驗(yàn)證邊緣應(yīng)力是過(guò)渡區(qū)應(yīng)力波動(dòng)的主要原因。根據(jù)邊緣應(yīng)力的性質(zhì)和特點(diǎn),提出有效抑制邊緣應(yīng)力的具體措施。最后基于有限元分析軟件ABAQUS,對(duì)受內(nèi)壓三心底進(jìn)行彈、塑性屈曲分析,討論屈曲行為對(duì)幾何參數(shù)的敏感性,結(jié)果顯示屈曲載荷和屈曲形態(tài)對(duì)幾何參數(shù)比較敏感。3.針對(duì)大直徑貯箱橢球底模數(shù)和內(nèi)壓穩(wěn)定性進(jìn)行研究。首先從理論上分析模數(shù)對(duì)橢球底應(yīng)力、貯箱承載能力、箭體長(zhǎng)度、貯箱重量及箱底與短殼間空間的影響規(guī)律。然后探討筒段邊界對(duì)橢球底屈曲載荷和臨界屈曲模數(shù)的影響,結(jié)果顯示筒段邊界對(duì)橢球底內(nèi)壓屈曲行為存在抑制作用,筒段邊界的存在導(dǎo)致箱底臨界屈曲載荷較理論值偏大。最后研究典型橢球底結(jié)構(gòu)對(duì)不同類(lèi)型缺陷的敏感性規(guī)律,研究結(jié)果可為大直徑貯箱橢球底內(nèi)壓屈曲折減因子的選取提供參考。4.針對(duì)大直徑環(huán)形液氧貯箱進(jìn)行力學(xué)性能分析與精細(xì)優(yōu)化設(shè)計(jì)。對(duì)環(huán)形貯箱開(kāi)展考慮穩(wěn)定性約束的輕量化設(shè)計(jì),基于拓?fù)鋬?yōu)化技術(shù)獲得內(nèi)隔板最優(yōu)傳力路徑,最終獲得工程上可用的設(shè)計(jì)方案。
[Abstract]:At present, China is developing a new generation of carrier rocket tank structure, and will also develop a heavy launch vehicle tank structure in the future. With the increasing of structure scale, the size effect of structure is more obvious, and the requirement of lightweight is higher. The traditional design ideas and methods can not meet the requirements, and more detailed design ideas and quantitative control methods are needed in the structural design. In this paper, the mechanical performance analysis and optimization design of typical large diameter tank structures are carried out. The concrete contents are as follows: 1. The strength analysis and fine optimization design of the Y-shaped transition ring of a large diameter tank are carried out. Firstly, the reason for the excessive stress difference between the inner and outer side of the weld joint between the transition ring and the tube section is discussed. Then the influence of Y ring and tube shape on the stress distribution of weld and heat affected zone is studied. Finally, based on the cooperative optimization strategy of parameter optimization and shape optimization, The optimization platform is built by integrating the finite element analysis software ABAQUS with ISIGHT multidisciplinary optimization software. The final optimization results based on the platform can effectively improve the stress level at the joint of Y-ring and tube weld. The stress state and internal pressure stability of the three bottom of the large diameter tank are studied. Firstly, through theoretical analysis, finite element calculation and test test, the stress variation law of the three bottom is discussed. It is verified that the edge stress is the main reason for the stress fluctuation in the transition zone. According to the properties and characteristics of the edge stress, the concrete measures to effectively suppress the edge stress are put forward. Plastic buckling analysis is used to discuss the sensitivity of buckling behavior to geometric parameters. The results show that buckling load and buckling form are sensitive to geometric parameters. 3. The stability of modulus and internal pressure of ellipsoid of large diameter tank is studied. Firstly, the stress of modulus to ellipsoid, the carrying capacity of tank and the length of arrow are analyzed theoretically. The influence of the container weight and the space between the bottom of the container and the short shell on the buckling load and the critical buckling modulus of the ellipsoid is discussed. The results show that the boundary of the cylinder has an inhibitory effect on the buckling behavior of the ellipsoid bottom. The critical buckling load on the bottom of the box is larger than the theoretical value due to the existence of the boundary of the tube. Finally, the sensitivity of typical ellipsoidal structures to different types of defects is studied. The results can provide a reference for the selection of buckling factor in the ellipsoidal bottom of the large diameter tank. 4. The mechanical performance analysis and fine optimization design of the large diameter liquid oxygen tank are carried out. The stability of the ring tank is considered. Beam lightweight design, Based on the topology optimization technique, the optimal load transfer path of the inner diaphragm is obtained, and the design scheme available in engineering is obtained.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V421;V475.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 朱平萍;劉憲力;;大型貯箱結(jié)構(gòu)及工藝性研究[J];航天制造技術(shù);2011年03期
2 戚國(guó)勝;容器設(shè)計(jì)中邊緣應(yīng)力的處理[J];臺(tái)州師專(zhuān)學(xué)報(bào);2001年03期
3 李蓉;;橢圓封頭與筒體連接處不連續(xù)應(yīng)力分析[J];化工設(shè)計(jì)通訊;2006年02期
4 湯國(guó)偉;張彤;;碟形封頭壓力容器在內(nèi)壓作用下的彈塑性屈曲及后屈曲行為研究[J];壓力容器;2012年10期
5 孫琴;一種新型的環(huán)形液氧貯箱[J];世界導(dǎo)彈與航天;1989年11期
,本文編號(hào):1646162
本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/1646162.html
最近更新
教材專(zhuān)著