玉樹(shù)機(jī)場(chǎng)公路堆積層滑坡支擋結(jié)構(gòu)的地震響應(yīng)試驗(yàn)研究
發(fā)布時(shí)間:2018-02-20 04:36
本文關(guān)鍵詞: 堆積層 地震滑坡 支擋結(jié)構(gòu) 地震響應(yīng)特征 出處:《西南交通大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:“4.14”玉樹(shù)地震引發(fā)了G214線玉樹(shù)機(jī)場(chǎng)公路段堆積層斜坡發(fā)生滑坡,并且形成了0“、1#和2#三個(gè)主要滑坡群,滑坡造成公路沿線部分既有抗滑支擋結(jié)構(gòu)發(fā)生不同程度的破壞,為了保證機(jī)場(chǎng)公路暢通,亟需對(duì)3個(gè)滑坡群進(jìn)行工程治理。由于滑坡發(fā)生在較為松散堆積層斜坡上,滑體疏松,很難確定不同抗滑支擋結(jié)構(gòu)在地震再次發(fā)生時(shí)所受力的大小、分布形式以及它們的動(dòng)態(tài)變化情況,這是玉樹(shù)機(jī)場(chǎng)公路滑坡整治工程設(shè)計(jì)中需要解決的問(wèn)題。本文結(jié)合青海省交通建設(shè)科技項(xiàng)目“青海玉樹(shù)地震滑坡(公路)與邊坡災(zāi)害防治技術(shù)研究”(N0:2010-03),以玉樹(shù)G214線玉樹(shù)機(jī)場(chǎng)段0#滑坡群第4塊滑坡作為典型工點(diǎn)進(jìn)行研究,設(shè)計(jì)完成了4組(多排抗滑樁動(dòng)力響應(yīng)試驗(yàn)、樁頂約束型抗滑樁動(dòng)力響應(yīng)試驗(yàn)、多錨點(diǎn)預(yù)應(yīng)力錨索樁板墻動(dòng)力響應(yīng)試驗(yàn)和集束式樁錨結(jié)構(gòu))相似比為1:75的滑坡——抗滑支擋結(jié)構(gòu)模型,開(kāi)展了大型振動(dòng)臺(tái)模型試驗(yàn),研究堆積體滑坡支擋結(jié)構(gòu)的地震動(dòng)態(tài)響應(yīng)特征以及抗滑支擋效果,為玉樹(shù)機(jī)場(chǎng)公路堆積層滑坡抗滑支擋結(jié)構(gòu)設(shè)計(jì)提供理論指導(dǎo)。主要結(jié)論如下:1.多排抗滑樁、樁頂約束型抗滑樁以及多錨點(diǎn)預(yù)應(yīng)力錨索樁板墻中抗滑樁所受地震動(dòng)土壓力與殘余土壓力樁后分布形式相似,均呈現(xiàn)“R”型分布,受荷段最大土壓力位置為滑面以上約1/3處,錨固段最大土壓力位置靠近樁底部;樁前分布形式相似,最大土壓力位置為滑面處。當(dāng)土體發(fā)生塑性破壞時(shí),受荷段最大土壓力位置上升至滑面以上約2/3處,而錨固段最大土壓力位置基本不變。2.設(shè)置錨索改變了抗滑樁的受力狀態(tài)使樁對(duì)土體產(chǎn)生了反向作用,導(dǎo)致樁體懸臂段土壓力增長(zhǎng)幅度更為均勻,土壓力值更加接近。預(yù)應(yīng)力錨索在地震荷載作用下的變化受輸入地震動(dòng)曲線影響,應(yīng)變幅值隨PGA的增大呈現(xiàn)“增大-減小-增大”的變化情況,出現(xiàn)預(yù)應(yīng)力損失,所以應(yīng)注意錨索的安全儲(chǔ)備;9度甚至更高烈度情況下其樁頂位移變化小,錨索限位作用明顯。3.輸入地震波加速度是模型地震響應(yīng)特征的主要影響因素,支擋結(jié)構(gòu)的動(dòng)土壓力、殘余土壓力、位移、應(yīng)變、加速度放大系數(shù)及其其這些特征的變化速率等均受輸入地震波加速度影響,而且均與輸入地震波加速PGA呈正增長(zhǎng)關(guān)系;模型響應(yīng)特征在XZ雙向地震荷載作用下要較X單向地震荷載作用明顯,說(shuō)明豎向地震荷載增強(qiáng)整體地震效應(yīng)。4.試驗(yàn)表明堆積層滑坡中各種支擋結(jié)構(gòu)模型經(jīng)過(guò)地震工況作用下,抗滑支擋效果不盡相同:組合支擋結(jié)構(gòu)(預(yù)應(yīng)力錨索框架結(jié)構(gòu)+微型樁)多錨點(diǎn)預(yù)應(yīng)力錨索樁板式抗滑結(jié)構(gòu)單錨點(diǎn)預(yù)應(yīng)力錨索樁板式抗滑結(jié)構(gòu)樁頂約束型抗滑樁支擋結(jié)構(gòu)普通抗滑樁支擋結(jié)構(gòu);對(duì)于抗滑支擋結(jié)構(gòu)的布置形式而言,多排支擋結(jié)構(gòu)在地震荷載作用下的抗滑支擋效果要好于單排抗滑支擋結(jié)構(gòu)。
[Abstract]:The "4.14" Yushu earthquake caused the slope of the accumulation layer of Yushu Airport Section of Line G214 to landslide, and formed three main landslide groups, namely "0" and "2#". The landslide caused the damage of some existing anti-slide retaining structures along the highway to varying degrees. In order to ensure the smooth running of the airport highway, it is urgent to carry out engineering treatment for the three landslide groups. Because the landslide occurs on the slope of the relatively loose accumulation layer and the sliding body is loose, it is difficult to determine the magnitude of the force exerted by the different anti-slide retaining structures when the earthquake occurs again. The form of distribution and their dynamic changes, This is the problem that needs to be solved in the design of highway landslide regulation project of Yushu Airport. This paper combines Qinghai Province traffic construction science and technology project "Qinghai Yushu earthquake landslide (Highway) and Slope disaster Prevention Technology Research" N0: 2010-030, Yushu G214 Line. The fourth block landslide of 0# landslide group in Yushu Airport is studied as a typical site. Four groups (multi-row anti-slide pile dynamic response test, pile top constrained anti-slide pile dynamic response test) were designed and completed. The dynamic response test of prestressed anchor cable pile and slab wall with multiple anchors and cluster pile-anchor structure with similarity ratio of 1: 75 are carried out on a large shaking table model. This paper studies the seismic dynamic response characteristics and anti-slide retaining effect of landslide retaining structure of accumulation body, which provides theoretical guidance for the design of landslide anti-slide retaining structure in Yushu airport highway. The main conclusions are as follows: 1. Multi-row anti-slide piles, The seismic dynamic earth pressure of anti-slide pile in pile top restrained pile and multi-anchor prestressed anchor cable pile and plate wall is similar to that of residual earth pressure pile, and all of them show "R" type distribution, and the maximum earth pressure position of the bearing section is about 1/3 places above the sliding surface. The position of the maximum earth pressure in the anchoring section is near the bottom of the pile, the distribution of the maximum earth pressure in front of the pile is similar, and the maximum earth pressure is located on the sliding surface. When plastic failure occurs in the soil, the maximum earth pressure position of the loaded section rises to about 2/3 above the sliding surface. However, the maximum earth pressure position of the anchoring section is basically unchanged. 2. The anchoring cable changes the stress state of the anti-slide pile and causes the pile to have a reverse effect on the soil mass, which results in a more uniform increase of the earth pressure in the cantilever section of the pile body. The variation of prestressed anchor cable under earthquake load is affected by the input seismic curve, and the strain amplitude changes with the increase of PGA, and the prestress loss occurs. Therefore, it should be noted that under the condition of safe reserve of anchor cable with 9 degree or higher intensity, the displacement of pile top is small, and the effect of anchor cable limit is obvious .3.Input seismic wave acceleration is the main influencing factor of the seismic response characteristics of the model, and the dynamic earth pressure of retaining structure. The residual earth pressure, displacement, strain, acceleration magnification factor and the change rate of these characteristics are all affected by the acceleration of the input seismic wave, and all of them are positively related to the acceleration of the PGA of the input seismic wave. The response characteristics of the model under the action of XZ bidirectional earthquake load are more obvious than that of X unidirectional seismic load, which indicates that the vertical seismic load enhances the overall seismic effect .4.The test results show that the various retaining structure models in the accumulation layer landslide are subjected to earthquake working conditions. The effect of anti-slide support is not the same: composite support structure (prestressed anchor cable frame structure miniature pile) multi-anchor point prestressed anchor cable pile plate type anti-slide structure single anchor point prestressed anchor cable pile plate type anti-slide pile pile top restraint pile. Support structure ordinary anti-slide pile retaining structure; For the arrangement of anti-slide retaining structure, the anti-slide retaining effect of multi-row supporting structure under earthquake load is better than that of single-row anti-slide retaining structure.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V35;U418.55
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 陳學(xué)良,袁一凡;求解振動(dòng)方程的一種顯式積分格式及其精度與穩(wěn)定性[J];地震工程與工程振動(dòng);2002年03期
2 馮震;王娜;林瑋;李巨文;;在考慮慣性力情況下?lián)跬翂箴ば蕴钔林鲃?dòng)土壓力的計(jì)算[J];地震工程與工程振動(dòng);2008年01期
3 劉漢龍,陸兆溱,錢(qián)家歡;土石壩地震永久變形分析[J];河海大學(xué)學(xué)報(bào);1996年01期
4 盧坤林;楊揚(yáng);朱大勇;許強(qiáng);;考慮土拱效應(yīng)的擋土墻地震土壓力及其分布[J];水電能源科學(xué);2010年05期
5 王云球;粘性土地震土壓力的計(jì)算方法[J];水運(yùn)工程;1980年08期
,本文編號(hào):1518778
本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/1518778.html
最近更新
教材專(zhuān)著