超聲速進(jìn)氣道起動(dòng)特性研究
本文關(guān)鍵詞:超聲速進(jìn)氣道起動(dòng)特性研究 出處:《航天動(dòng)力技術(shù)研究院》2016年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 超聲速進(jìn)氣道 起動(dòng)性能 進(jìn)氣道堵蓋 出口反壓 固體火箭沖壓發(fā)動(dòng)機(jī)
【摘要】:固體火箭沖壓發(fā)動(dòng)機(jī)具有比沖高、工作時(shí)間長(zhǎng)、結(jié)構(gòu)簡(jiǎn)單、機(jī)動(dòng)性強(qiáng)等優(yōu)點(diǎn),是先進(jìn)導(dǎo)彈動(dòng)力系統(tǒng)的重要發(fā)展方向之一。超聲速進(jìn)氣道作為沖壓發(fā)動(dòng)機(jī)的核心部件之一,其起動(dòng)性能決定了發(fā)動(dòng)機(jī)的工作包絡(luò)。因此,確定超聲速進(jìn)氣道的起動(dòng)特性至關(guān)重要。地面仿真和飛行試驗(yàn)中多次證實(shí),發(fā)動(dòng)機(jī)轉(zhuǎn)級(jí)裝置——進(jìn)氣道堵蓋對(duì)起動(dòng)性能影響顯著。某次飛行試驗(yàn)中,由于轉(zhuǎn)級(jí)時(shí)進(jìn)氣道不起動(dòng),造成飛行失敗。可見(jiàn),確定進(jìn)氣道起動(dòng)特性和堵蓋影響機(jī)制已成為沖壓發(fā)動(dòng)機(jī)技術(shù)發(fā)展和工程應(yīng)用中亟需解決的關(guān)鍵問(wèn)題。本文基于工程實(shí)際需求,針對(duì)典型沖壓發(fā)動(dòng)機(jī)的雙下側(cè)二元混壓式進(jìn)氣道起動(dòng)特性,開(kāi)展了數(shù)值仿真研究。本文首先建立了彈體/進(jìn)氣道一體化三維仿真模型,研究了雙下側(cè)二元進(jìn)氣道在轉(zhuǎn)級(jí)工況下起動(dòng)狀態(tài)的流場(chǎng)特性。結(jié)果表明:隨反壓增加,結(jié)尾激波系逐漸向上游移動(dòng),到達(dá)喉道后,繼續(xù)增大反壓,在一定范圍內(nèi),結(jié)尾激波系可以穩(wěn)定在收縮通道內(nèi),即存在穩(wěn)定的亞臨界狀態(tài)。然后,本文研究了Ma=2.5~3.5、α=-2o~8o、β=0o~6o工況下進(jìn)氣道的流場(chǎng)特性和抗反壓性能,擬合了極限反壓比預(yù)估公式。結(jié)果表明:進(jìn)氣道極限反壓與來(lái)流總壓、喉道總壓恢復(fù)系數(shù)和流量系數(shù)相關(guān);隨來(lái)流馬赫數(shù)增大,自由流總壓和流量系數(shù)均提高,喉道總壓恢復(fù)系數(shù)降低,綜合影響下,進(jìn)氣道抗反壓能力增強(qiáng);隨攻角增大,總壓恢復(fù)系數(shù)和流量系數(shù)均提高,進(jìn)氣道極限反壓升高;在側(cè)滑情況下,背風(fēng)側(cè)進(jìn)氣道性能參數(shù)和抗反壓能力均優(yōu)于迎風(fēng)側(cè)進(jìn)氣道;隨側(cè)滑角增大,兩側(cè)性能參數(shù)變化趨勢(shì)不同,背風(fēng)側(cè)進(jìn)氣道總壓恢復(fù)系數(shù)、流量系數(shù)先升高后降低,迎風(fēng)側(cè)持續(xù)降低;當(dāng)迎風(fēng)側(cè)不起動(dòng)后,迎風(fēng)側(cè)脫體激波會(huì)干擾背風(fēng)側(cè)的外壓縮波系,甚至可能使背風(fēng)側(cè)也不起動(dòng)。其次,本文仿真分析了不同工況下進(jìn)氣道的不起動(dòng)/再起動(dòng)過(guò)程。分析結(jié)果表明:進(jìn)氣道入口前氣流總壓是決定進(jìn)氣道再起動(dòng)反壓的主要因素;來(lái)流馬赫數(shù)越大,氣流總壓越高,再起動(dòng)反壓越高;攻角越大,彈體干擾越弱,入口前氣流總壓越高,再起動(dòng)反壓越高,α≥2o后彈體干擾極弱,再起動(dòng)反壓不再隨攻角增大而變化;在側(cè)滑情況下,兩側(cè)進(jìn)氣道再起動(dòng)不同步;背風(fēng)側(cè)進(jìn)氣道受彈體干擾小,再起動(dòng)反壓基本不隨側(cè)滑角變化;對(duì)于迎風(fēng)側(cè)進(jìn)氣道,當(dāng)側(cè)滑角β≤2o時(shí),彈體干擾較弱,再起動(dòng)反壓接近背風(fēng)側(cè),當(dāng)側(cè)滑角β≥4o時(shí),隨側(cè)滑角增大,彈體干擾增強(qiáng),再起動(dòng)反壓降低,明顯滯后于背風(fēng)側(cè)。最后,本文重點(diǎn)研究了固體火箭沖壓發(fā)動(dòng)機(jī)轉(zhuǎn)級(jí)裝置——進(jìn)氣道堵蓋對(duì)進(jìn)氣道起動(dòng)特性的影響。根據(jù)不同轉(zhuǎn)級(jí)時(shí)序,分別對(duì)入口堵蓋和出口堵蓋開(kāi)啟過(guò)程進(jìn)行非穩(wěn)態(tài)流場(chǎng)仿真。結(jié)果表明:入口堵蓋有利于進(jìn)氣道起動(dòng),可使進(jìn)氣道起動(dòng)馬赫數(shù)從Ma=2.31降到Ma=2.29;在入口開(kāi)啟,出口封堵時(shí),進(jìn)氣道流場(chǎng)出現(xiàn)周期性振蕩,頻率與一階聲模態(tài)一致,進(jìn)氣道越下游位置壓力峰值越高;出口堵蓋開(kāi)啟時(shí)刻對(duì)進(jìn)氣道起動(dòng)性能有較大影響,充填階段開(kāi)啟更有利于進(jìn)氣道起動(dòng);在釋放階段開(kāi)啟,進(jìn)氣道會(huì)出現(xiàn)短時(shí)間的低頻、大幅喘振。
[Abstract]:Solid rocket ramjet engine has high specific impulse, long working time, simple structure, flexibility, is one of the important development direction of advanced missile power system. As one of the core components of supersonic inlet of ramjet engine, its starting performance determines the working envelope of engine. Therefore, it is of great importance to determine the starting characteristics of supersonic inlet. Repeatedly confirmed ground simulation and flight test, engine level switching device, inlet blocking effect on the cover was starting performance. One of the flight tests, due to the unstart transfer, causing flight failure. Obviously, determine the inlet starting characteristics and cover influence mechanism has become a key issue in the urgent need for the development of ramjet technology and engineering the application in solution. In this paper, based on the demand of engineering, aiming at the typical double downside ramjet inlet two yuan starting characteristics And carry out numerical simulation. This paper established a three-dimensional simulation model of missile / engine integration, flow characteristics of the double side two yuan in transfer under the condition of inlet starting. The results show that with increasing back pressure at the end of the shock wave system gradually moves upstream to the throat, continue to increase the back pressure in the within a certain range, at the end of shock wave can stabilize the contraction in the channel, there is a stable subcritical state. Then, this paper studies the Ma=2.5~3.5, alpha =-2o~8o, beta =0o~6o under the condition of flow characteristics of the inlet and the anti pressure performance, fitting the limit back pressure ratio prediction formula. The results show that the inlet pressure and flow limit total pressure, total pressure recovery coefficient and flow coefficient of throat; with the Mach number increases, the free flow total pressure and flow coefficient were increased, the total pressure recovery coefficient decreased throat, under the combined effects of inlet of the anti pressure ability enhancement Strong; with the angle of attack increases, the total pressure recovery coefficient and flow coefficient were increased, the inlet pressure in the limit of anti sideslip; under the condition of the leeward side of the inlet performance parameters and anti pressure ability are better than the windward side inlet; with the increase of sideslip angle, different change trend on both sides of the performance parameters, the total pressure recovery coefficient of the inlet flow on the leeward side. The coefficient increased first and then decreased, the windward side continues to decrease; when the windward side does not start after the windward leeward side will interfere with the detached shock compression wave, even to the leeward side is not starting. Secondly, this paper analyzed the unstart / restart process under different conditions. The analysis results show that the inlet port in front of the entrance flow total pressure is decided to start the main factors of back pressure inlet; flow Maher number increases, the total air pressure is higher, then starting back pressure is high; the bigger the attack angle, body interference is weak in front of the entrance of air pressure The higher, then starting back pressure higher than 2O, alpha after body interference is very weak, and then starting back pressure is no longer with the angle of attack increases and changes in sideslip; under the condition of side inlet restarting is not synchronized; the leeward side inlet by projectile interference, then starting pressure almost does not change with the sideslip angle on the windward side; when the inlet, the sideslip angle beta = 2O, body interference is weak, then starting back pressure close to the leeward side, when the sideslip angle beta is greater than or equal to 4O, with the increase of the sideslip angle, body interference enhancement, then starting back pressure decreased, obvious lag in the leeward side. Finally, this paper focuses on the research of solid rocket ramjet transfer device inlet cover effect on inlet starting characteristics. According to different level timing of entrance closure and export cover opening process of unsteady flow simulation. The results show that the entrance cover for inlet starting, the inlet starting from the Maher number Ma=2.31 reduced to Ma=2.29; in the open entrance, exit plugging, inlet flow periodic oscillation frequency and first order acoustic mode, the inlet position downstream of the peak pressure is high; export cover opening time has great influence on the performance of inlet starting, the filling stage of opening more conducive to open the inlet starting in the release phase of low frequency; there will be a short period of time, the inlet surge sharply.
【學(xué)位授予單位】:航天動(dòng)力技術(shù)研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:V211.48
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王國(guó)輝,李進(jìn)賢,蔡體敏;二元混壓超聲速進(jìn)氣道三維流動(dòng)數(shù)值分析[J];推進(jìn)技術(shù);2001年02期
2 李高春,袁書(shū)生;混壓式超聲速進(jìn)氣道流場(chǎng)數(shù)值模擬[J];航空計(jì)算技術(shù);2002年04期
3 陳兵;徐旭;蔡國(guó)飆;;超聲速進(jìn)氣道可壓及不可壓流動(dòng)數(shù)值模擬[J];北京航空航天大學(xué)學(xué)報(bào);2006年01期
4 常軍濤;鮑文;于達(dá)仁;曲亮;;一維超聲速進(jìn)氣道運(yùn)動(dòng)激波的動(dòng)態(tài)仿真[J];導(dǎo)彈與航天運(yùn)載技術(shù);2007年04期
5 王平;段煉;馬洪安;;外壓式超聲速進(jìn)氣道流場(chǎng)的數(shù)值模擬[J];飛機(jī)設(shè)計(jì);2009年05期
6 李世珍;唐碩;;二維超聲速進(jìn)氣道數(shù)值仿真研究[J];計(jì)算機(jī)仿真;2010年12期
7 盧燕,樊思齊;超聲速進(jìn)氣道內(nèi)特性數(shù)值模擬及性能分析[J];飛機(jī)設(shè)計(jì);2003年03期
8 李季穎;袁書(shū)生;戢治洪;關(guān)英勇;;擾動(dòng)對(duì)超聲速進(jìn)氣道起動(dòng)狀態(tài)影響的數(shù)值模擬[J];海軍航空工程學(xué)院學(xué)報(bào);2006年02期
9 戎宜生;陳偉芳;楊宇斌;劉偉強(qiáng);;超聲速進(jìn)氣道結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)研究[J];力學(xué)季刊;2010年03期
10 郭應(yīng)鈞;超聲速進(jìn)氣道流場(chǎng)和邊界層計(jì)算[J];空氣動(dòng)力學(xué)學(xué)報(bào);1990年01期
相關(guān)會(huì)議論文 前3條
1 張龍冬;張X元;南向軍;;無(wú)側(cè)滑二元超聲速進(jìn)氣道側(cè)板遮擋度對(duì)其性能影響研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
2 關(guān)祥東;孟宇鵬;朱守梅;;一種基于流管收縮比初步評(píng)價(jià)超聲速進(jìn)氣道性能的方法[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 關(guān)祥東;孟宇鵬;朱守梅;;脈沖爆震發(fā)動(dòng)機(jī)用超聲速進(jìn)氣道非定常流場(chǎng)初步研究[A];第十四屆全國(guó)激波與激波管學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2010年
相關(guān)碩士學(xué)位論文 前6條
1 陳義;超聲速進(jìn)氣道起動(dòng)特性研究[D];航天動(dòng)力技術(shù)研究院;2016年
2 盧賢鋒;超聲速進(jìn)氣道內(nèi)外流場(chǎng)計(jì)算與數(shù)學(xué)模型研究[D];西北工業(yè)大學(xué);2003年
3 方傳波;基于主動(dòng)射流的超聲速進(jìn)氣道起動(dòng)特性數(shù)值模擬研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
4 董家峰;彈用二元混壓超聲速進(jìn)氣道設(shè)計(jì)與試驗(yàn)研究[D];西北工業(yè)大學(xué);2007年
5 張龍冬;側(cè)板對(duì)二元超聲速進(jìn)氣道性能影響研究[D];南京航空航天大學(xué);2009年
6 劉曉偉;彈用超聲速進(jìn)氣道設(shè)計(jì)、數(shù)值模擬和流動(dòng)控制研究[D];西北工業(yè)大學(xué);2007年
,本文編號(hào):1410130
本文鏈接:http://www.sikaile.net/kejilunwen/hangkongsky/1410130.html