船載高頻地波雷達海洋表面流遙感方法研究
[Abstract]:High Frequency Surface Wave Radar (HFSWR) makes use of the vertical polarized high-frequency electromagnetic wave (3-30 MHz) to realize the over-the-horizon detection of targets such as marine vessels and low-altitude aircraft, as well as the large range of information on the surface state of the ocean (such as current, wind field and wave, etc.). All-weather sea-state remote sensing. The ship-borne HFSWR is an in-depth and development of the shore-based HFSWR technology. In addition to the advantages of the land-based radar, the ship-borne HFSWR is characterized by the flexible mobility of the ship-borne platform. With this feature, the shipboard HFSWR can quickly go to the area of interest to carry out the target detection or the sea-state remote sensing operation. Therefore, the shipboard HFSWR has a wide development prospect and application value in the military and civil fields. At present, the sea-state remote sensing theory and application technology based on the shore-based HFSWR are relatively mature, and a variety of shore-based HFSWR systems have been successfully developed at home and abroad. But the research of the sea-state remote sensing theory and the application technology based on the shipborne HFSWR is basically a blank. In this paper, the ship-borne HFSWR is used as the research platform, and the sea surface flow is used as the research object to carry out the research of the ship-borne HFSWR ocean surface flow remote sensing method. The research results of this paper will provide a new theoretical basis and method for carrying out the shipborne HFSWR sea-state remote sensing research, which is of great significance to the deep research and development of radio oceanography. The main contents of this paper are as follows:1. The basic principle of the sea surface flow remote sensing of the shore-based HFSWR is briefly introduced, and on the basis of this, the mechanism of the Doppler spectrum broadening of the shipborne HFSWR wave echo signal and the main problems for the application of the ship-borne HFSWR to the remote sensing of the marine surface flow are analyzed, that is, the direction of arrival of the radial flow of the ocean surface (Direction-of-Arrival, DOA estimation, space-time coupling of sea wave echo signals, and estimation of vector flow for single-station ocean surface. Aiming at the problem that the number of the array elements is small in the radial flow direction estimation of the ship-borne HFSWR ocean surface, the problem that the target signal is easy to appear in the Doppler spectrum of the spread sea wave echo and the problem that the reconstruction precision is low and the calculation amount is large are common in the extended sea wave echo Doppler spectrum, Firstly, the sparsity of the ship-borne HFSWR wave echo signal in a single distance and a Doppler-resolving unit is analyzed, and two DOA estimation methods based on the sparse representation of the real-value array signal and the real-value array signal covariance matrix are then studied. And finally, the validity of the two real-value sparse representation methods is verified by the computer simulation result and the measured ship-borne HFSWR data processing result. Aiming at the problem of space-time coupling of the shipborne HFSWR wave echo signal, the characteristic spectrum and the distribution characteristic of the shipborne HFSWR wave echo signal are firstly analyzed, A method for estimating the rank of a ship-borne HFSWR wave echo signal covariance matrix (that is, the number of large characteristic values in the wave echo signal characteristic spectrum) is studied, and then the sparsity of the ship-borne HFSWR wave echo signal in the whole space-time two-dimensional joint domain is analyzed by using the method, In this paper, a space-time two-dimensional multi-signal classification (MUSIC) method based on sparse representation of real-value is studied, and it is applied to the space-time two-dimensional spectral estimation of ship-borne HFSWR wave echo signals. Finally, a computer simulation analysis is used to verify the validity of the ship-borne HFSWR wave echo signal covariance matrix rank estimation method and the space-time two-dimensional MUSIC method based on the real-value sparse representation. aiming at the problem that the single-station HFSWR is difficult to directly acquire the ocean surface vector flow, the distribution characteristics of the marine surface vector flow field and the distribution characteristics of the ship-borne HFSWR ocean surface radial flow measurement error are analyzed theoretically, a single-station shipborne HFSWR ocean surface vector flow estimation method based on the first-order flow function is researched, And the effectiveness of the method under the conditions of uniform flow field and non-uniform flow field is verified by computer simulation analysis.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:P715.7;TN959
【相似文獻】
相關期刊論文 前10條
1 高志榮;熊承義;笪邦友;;改進的基于殘差加權的稀疏表示人臉識別[J];中南民族大學學報(自然科學版);2012年03期
2 陳才扣;喻以明;史俊;;一種快速的基于稀疏表示分類器[J];南京大學學報(自然科學版);2012年01期
3 耿耀君;張軍英;;一種基于投影稀疏表示的基因選擇方法[J];哈爾濱工程大學學報;2011年08期
4 熊承義;汪淑賢;高志榮;;基于字典優(yōu)化的稀疏表示人臉識別[J];中南民族大學學報(自然科學版);2014年02期
5 戴平陽;洪景新;李翠華;詹小靜;;一種基于稀疏表示的判別式目標跟蹤算法[J];廈門大學學報(自然科學版);2014年04期
6 趙佳佳;唐崢遠;楊杰;劉爾琦;周越;;基于圖像稀疏表示的紅外小目標檢測算法[J];紅外與毫米波學報;2011年02期
7 柯激情;祝磊;厲力華;韓斌;鄭智國;孟旭莉;;基于稀疏表示算法的蛋白質(zhì)質(zhì)譜數(shù)據(jù)特征選擇[J];生物物理學報;2012年08期
8 王立國;劉丹鳳;趙亮;;基于高光譜圖像稀疏表示的彩色可視化模型(英文)[J];Applied Geophysics;2013年02期
9 宋琳;程詠梅;趙永強;;基于稀疏表示模型和自回歸模型的高光譜分類[J];光學學報;2012年03期
10 羅燕龍;劉偉盛;戴平陽;李翠華;;基于局部稀疏表示模型的海上紅外目標跟蹤方法[J];廈門大學學報(自然科學版);2013年03期
相關會議論文 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識別研究[A];虛擬運營與云計算——第十八屆全國青年通信學術年會論文集(上冊)[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標識別[A];2013年中國智能自動化學術會議論文集(第五分冊)[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號處理及其研究進展[A];中國聲學學會水聲學分會2013年全國水聲學學術會議論文集[C];2013年
相關博士學位論文 前10條
1 李進明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學;2015年
2 王亞寧;基于信號稀疏表示的電機故障診斷研究[D];河北工業(yè)大學;2014年
3 姚明海;視頻異常事件檢測與認證方法研究[D];東北師范大學;2015年
4 黃國華;蛋白質(zhì)翻譯后修飾位點與藥物適應癥預測方法研究[D];上海大學;2015年
5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復原與壓縮研究[D];北京工業(yè)大學;2015年
6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學;2015年
7 解虎;高維小樣本陣列自適應信號處理方法研究[D];西安電子科技大學;2015年
8 秦振濤;基于稀疏表示及字典學習遙感圖像處理關鍵技術研究[D];成都理工大學;2015年
9 薛明;基于稀疏表示的在線目標跟蹤研究[D];上海交通大學;2014年
10 孫樂;空譜聯(lián)合先驗的高光譜圖像解混與分類方法[D];南京理工大學;2014年
相關碩士學位論文 前10條
1 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學;2015年
2 趙孝磊;基于圖像分塊稀疏表示的人臉識別算法研究[D];南京信息工程大學;2015年
3 黃志明;基于辨別式稀疏字典學習的視覺追蹤算法研究[D];華南理工大學;2015年
4 張鈴華;非約束環(huán)境下的稀疏表示人臉識別算法研究[D];南京信息工程大學;2015年
5 賀妍斐;基于稀疏表示與自適應倒易晶胞的遙感圖像復原方法研究[D];南京信息工程大學;2015年
6 楊爍;電能質(zhì)量擾動信號的稀疏表示/壓縮采樣研究[D];西南交通大學;2015年
7 應艷麗;基于低秩稀疏表示的目標跟蹤算法研究[D];西南交通大學;2015年
8 梁曉捷;基于網(wǎng)絡攝像頭與稀疏表示分類法的實時人臉識別系統(tǒng)應用研究[D];五邑大學;2015年
9 張宏樂;語音信號稀疏表示方法研究[D];太原理工大學;2016年
10 郭欣;基于K-SVD稀疏表示的語音增強算法研究[D];太原理工大學;2016年
,本文編號:2490855
本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2490855.html