天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

濃海水鼓泡曬鹽及離子篩提鋰技術(shù)研究

發(fā)布時間:2019-04-01 13:34
【摘要】:隨著我國海水淡化應(yīng)用與技術(shù)的發(fā)展,其副產(chǎn)物濃海水的產(chǎn)量也隨之上升,因此濃海水的處理與綜合利用是當前海水淡化產(chǎn)業(yè)所必須面對、解決的重要問題和挑戰(zhàn)。目前,對于濃海水的利用主要集中于濃海水化學(xué)資源的提取,主要通過將海鹽生產(chǎn)以及苦鹵的綜合利用相結(jié)合,從中制備化工產(chǎn)品。文章根據(jù)現(xiàn)有濃海水化學(xué)資源綜合利用與化工技術(shù),針對海鹽生產(chǎn)以及苦鹵的綜合利用提出了濃海水鼓泡法曬鹽以及磁性納米鋰離子篩法提鋰,并對上述方法的關(guān)鍵技術(shù)進行探索和研究。首先,研究對濃海水鼓泡法曬鹽進行探索,為此在舟山六橫島所搭建的120 m2的濃海水鼓泡曬鹽池以及1 m2的對比池中進行探索性實驗,通過記錄液位、溫度、波美度、環(huán)境溫濕度的數(shù)據(jù),分析了影響濃海水鼓泡法曬鹽的主要影響因素;谔剿鲗嶒灲Y(jié)果的基礎(chǔ)之上,搭建兩種實驗室級別鼓泡池,在不同的鼓泡口數(shù)量與排布方式下,通過調(diào)節(jié)氣量、鼓泡口深度與鼓泡口間距等操作條件,分別考察了兩種尺度的氣泡群在鼓泡池中運動過程的行為。研究結(jié)果表明,濃海水鼓泡法曬鹽在固定時間段內(nèi)鼓泡效果最佳,此外氣泡在鼓泡池液面的覆蓋率以及破裂后濺射出的小液滴的數(shù)量是影響濃海水鼓泡曬鹽的主要影響因素。因此,研究提出在氣體流量相同的前提下,具有更高表面覆蓋度且能迸射出更多的小液滴的小氣泡更適合于濃海水鼓泡曬鹽過程。隨著氣流量、鼓泡口深度、間距的增大氣泡在液面的覆蓋率上升,但達到一定值后覆蓋率不再變化。在優(yōu)化后的操作參數(shù)下(單鼓泡口氣流量為0.4 L·min-1、鼓泡口深度為8 cm、鼓泡口間距為12 cm),小氣泡群的覆蓋率可以達到90%,蒸發(fā)速率可比傳統(tǒng)灘曬過程增加1~1.5倍。其次,研究制定了采用磁性納米鋰離子篩用于濃海水提鋰的四步法工藝路線。其中為制備核殼結(jié)構(gòu)的磁性納米鋰離子篩,研究開發(fā)出一種新型的高頻撞擊流反應(yīng)器(HISR)用于制備前驅(qū)體Fe3O4/Mn OOH。實驗通過對流量分布、包覆比、壓力等操作參數(shù)的進行調(diào)節(jié),制備了多批磁性納米鋰離子篩前驅(qū)體,并結(jié)合表征結(jié)果對操作參數(shù)對產(chǎn)品的影響進行分析。研究結(jié)果表明,當包覆比在0.23以下為異相成核,隨著包覆比的降低,成核誘導(dǎo)期逐漸延長,更長的分散時間提供給介觀與微觀混合。另外,隨著初始懸浮液流量的增加,反應(yīng)流道中介觀和微觀混合過程得到顯著強化,而反應(yīng)器中24條支流道的宏觀分布極大地強化宏觀混合過程。通過顯著強化多尺度混合過程最終獲得了包膜致密均勻的產(chǎn)品。
[Abstract]:With the development of the application and technology of seawater desalination in China, the production of concentrated seawater, its by-product, has also increased. Therefore, the treatment and comprehensive utilization of concentrated seawater is an important problem and challenge that must be faced and solved by the desalination industry at present. At present, the utilization of concentrated seawater is mainly focused on the extraction of the chemical resources of concentrated seawater, from which chemical products are prepared by combining the production of sea salt and the comprehensive utilization of bittern. According to the comprehensive utilization of chemical resources of concentrated seawater and chemical technology, this paper puts forward two methods of extracting lithium from sea salt by bubbling method and magnetic nano-lithium ion sieve method, aiming at the production of sea salt and the comprehensive utilization of bittern. And the key technology of the above-mentioned method is explored and studied. First of all, the study of the thick seawater bubbling method to explore the salt, for this purpose in the Zhoushan Liuheng Island 120 m2 of thick sea bubbling salt pool and 1 m2 of contrast pool exploratory experiments, by recording the liquid level, temperature, Baume degree, and so on, through the record of liquid level, temperature, Baume degree, through the record of liquid level, temperature, wave degree, The data of ambient temperature and humidity were analyzed, and the main influencing factors were analyzed. Based on the experimental results, two kinds of laboratory-level bubble cell are built. Under different bubble number and arrangement, the operation conditions such as air volume, bubble depth and bubble spacing are adjusted. The behavior of bubble group moving in bubbling cell at two scales was investigated respectively. The results show that the bubbling effect of concentrated seawater bubbling method is the best in a fixed period of time. In addition, the coverage rate of bubbles on the surface of the bubbling pool and the number of sputter droplets after rupture are the main factors that affect the bubbling salt of concentrated seawater. Therefore, on the premise that the gas flow rate is the same, the small bubble with higher surface coverage and more small droplets can burst out more suitable for the blistering process of concentrated sea water. With the increase of gas flow rate, bubble depth and spacing, the coverage rate of bubbles in the liquid surface increases, but the coverage rate no longer changes when the gas flow rate reaches a certain value. Under the optimized operating parameters (single bulging breath flow is 0.4L 路min-1, bubble mouth depth is 8 cm, bubble spacing is 12 cm), the coverage rate of small bubble group can reach 90%. The evaporation rate can be increased by 1. 5 times compared with the traditional beach process. Secondly, a four-step process for extracting lithium from concentrated seawater with magnetic nano-lithium ion sieve was developed. In order to prepare magnetic nano lithium ion sieve with core-shell structure, a new type of high frequency impinging stream reactor (HISR) was developed for the preparation of precursor Fe3O4/Mn OOH.. By adjusting the operating parameters, such as flow distribution, coating ratio, pressure and so on, several batches of magnetic nano-lithium ion sieve precursors were prepared, and the effect of the operating parameters on the product was analyzed by combining the characterization results. The results show that when the coating ratio is less than 0.23 for heterogeneous nucleation, the induction period is gradually prolonged with the decrease of the coating ratio, and longer dispersion time is provided to the mesoscopic and micro-mixing. In addition, with the increase of initial suspension flow rate, the meso-mixing and micro-mixing processes of the reaction channel are significantly strengthened, while the macro-distribution of the 24 branch channels in the reactor greatly strengthens the macro-mixing process. The dense and uniform coating products were finally obtained by significantly enhancing the multi-scale mixing process.
【學(xué)位授予單位】:浙江海洋學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P746

【相似文獻】

相關(guān)期刊論文 前5條

1 林亮成;鄭忠;張晉;陳偉;李東耀;;鼓泡床內(nèi)氣固兩相流的變尺度格子氣模擬[J];計算物理;2011年05期

2 謝波;楊通在;官銳;翁葵平;;旋轉(zhuǎn)噴嘴鼓泡法提取液態(tài)鋰鉛合金中的氫[J];核聚變與等離子體物理;2010年02期

3 劉慧勇;唐文憑;;關(guān)于DG140/5.3-1型鼓泡床鍋爐點火問題的解決方案探討[J];科技信息;2006年04期

4 周密,閻立峰,郭慶祥,朱清時;生物質(zhì)潔凈能源研究中的流化床動力學(xué)模型[J];化學(xué)物理學(xué)報;2003年05期

5 ;[J];;年期

相關(guān)會議論文 前5條

1 韓路長;劉躍進;;矩形鼓泡床雷諾應(yīng)力模型的瞬態(tài)數(shù)值模擬[A];第三屆全國化學(xué)工程與生物化工年會論文摘要集(下)[C];2006年

2 楊索和;靳海波;佟澤民;;大型漿態(tài)鼓泡床反應(yīng)器中的氣含率特征[A];第一屆全國化學(xué)工程與生物化工年會論文摘要集(上)[C];2004年

3 姜曉靜;張曉歡;虞賢波;王靖岱;陽永榮;;淤漿鼓泡床中聲波信號的多尺度多分形分解[A];第三屆全國化學(xué)工程與生物化工年會論文摘要集(上)[C];2006年

4 卞太鋒;王玉華;吳勇強;朱學(xué)棟;;鼓泡床內(nèi)乙烯-苯體系氣泡參數(shù)研究[A];上海市化學(xué)化工學(xué)會2006年度學(xué)術(shù)年會論文摘要集[C];2006年

5 張鍇;畢繼誠;Brandani Stefano;;氣固密相流化床的多相流CFD模擬進展[A];中國顆粒學(xué)會2006年年會暨海峽兩岸顆粒技術(shù)研討會論文集[C];2006年

相關(guān)博士學(xué)位論文 前1條

1 邢楚填;鼓泡床反應(yīng)器實驗研究及CFD-PBM耦合模型數(shù)值模擬[D];清華大學(xué);2014年

相關(guān)碩士學(xué)位論文 前6條

1 羅瀟;氣液鼓泡床內(nèi)液體循環(huán)的研究[D];湘潭大學(xué);2007年

2 胡強;噴嘴孔徑對鼓泡床內(nèi)氣泡分散和質(zhì)量傳遞的影響[D];四川大學(xué);2004年

3 陶亨聰;濃海水鼓泡曬鹽及離子篩提鋰技術(shù)研究[D];浙江海洋學(xué)院;2015年

4 王國峰;氣液兩相及氣液固三相鼓泡床流動特性的實驗研究[D];北京化工大學(xué);2006年

5 張博;顆粒界面和顆粒流體系統(tǒng)的格子玻爾茲曼模擬[D];北京化工大學(xué);2013年

6 楊索和;加壓漿態(tài)鼓泡床反應(yīng)器中部分流體力學(xué)特性的研究[D];北京化工大學(xué);2004年

,

本文編號:2451597

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2451597.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7c172***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com