基于動態(tài)極值理論和Copula函數(shù)的極端海平面高度預測建模
發(fā)布時間:2018-10-11 09:56
【摘要】:全球氣候變化背景下,海平面上升是一個潛在的重大風險,為防范氣候災害,應對極端氣象海洋事件,需客觀、定量地對未來極端海平面變化進行科學預測。為此,基于Copula函數(shù)和動態(tài)極值分析理論,綜合考慮平均海平面變化(包括垂直陸地運動和基準的局地變化)與潮、涌、浪等其他氣候變化的增水對極端海平面高度的影響,采用DREAM方法改進Bayes推斷對動態(tài)極值模型的參數(shù)空間估計問題,提出一種新的模型對未來極端海平面高度變化進行預測,旨在改進傳統(tǒng)模型存在的不確定性問題,并運用該模型對氣候變化背景下廈門地區(qū)未來35年的海平面變化情景進行了模型應用和實驗模擬。
[Abstract]:Under the background of global climate change, sea level rise is a potential major risk. In order to prevent climate disasters and deal with extreme meteorological ocean events, scientific prediction of future extreme sea level change is necessary. Therefore, based on the Copula function and the theory of dynamic extreme value analysis, the effects of mean sea level change (including vertical land movement and local variation of datum) and other climatic changes, such as tide, surge, wave, on extreme sea level height, are considered synthetically. DREAM method is used to improve the parameter space estimation of dynamic extremum model by Bayes inference, and a new model is proposed to predict the future extreme sea level height change, which aims to improve the uncertainty of the traditional model. The model is used to simulate the sea level change in Xiamen area in the next 35 years under the background of climate change.
【作者單位】: 解放軍理工大學氣象海洋學院;南京信息工程大學氣象災害預報預警與評估協(xié)同創(chuàng)新中心;河北省唐山市曹妃甸工業(yè)區(qū)氣象局;
【基金】:氣象水文預先研究項目(407010602) 唐山市曹妃甸工業(yè)區(qū)專項(CQZ-2014001)
【分類號】:P731.23
[Abstract]:Under the background of global climate change, sea level rise is a potential major risk. In order to prevent climate disasters and deal with extreme meteorological ocean events, scientific prediction of future extreme sea level change is necessary. Therefore, based on the Copula function and the theory of dynamic extreme value analysis, the effects of mean sea level change (including vertical land movement and local variation of datum) and other climatic changes, such as tide, surge, wave, on extreme sea level height, are considered synthetically. DREAM method is used to improve the parameter space estimation of dynamic extremum model by Bayes inference, and a new model is proposed to predict the future extreme sea level height change, which aims to improve the uncertainty of the traditional model. The model is used to simulate the sea level change in Xiamen area in the next 35 years under the background of climate change.
【作者單位】: 解放軍理工大學氣象海洋學院;南京信息工程大學氣象災害預報預警與評估協(xié)同創(chuàng)新中心;河北省唐山市曹妃甸工業(yè)區(qū)氣象局;
【基金】:氣象水文預先研究項目(407010602) 唐山市曹妃甸工業(yè)區(qū)專項(CQZ-2014001)
【分類號】:P731.23
【相似文獻】
相關期刊論文 前1條
1 陳子q,
本文編號:2263771
本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2263771.html
最近更新
教材專著