天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 海洋學(xué)論文 >

南大洋普里茲灣生物硅的生產(chǎn)、溶解、沉降及其保存機(jī)制研究

發(fā)布時間:2018-07-15 17:00
【摘要】:南大洋海冰區(qū)在全球變化中占有極為重要的地位,在碳等生源要素在全球生物地球化學(xué)循環(huán)中扮演著舉足輕重的角色。在南大洋,硅藻是生態(tài)系統(tǒng)中主要的生產(chǎn)者,是生物泵的重要組成部分,輸送到深海的有機(jī)碳通量一半以上是由硅藻貢獻(xiàn)的。因此進(jìn)行南大洋硅循環(huán)中關(guān)鍵的生物地球化學(xué)過程研究,有助于我們更好地理解南大洋碳循環(huán)的時空變化。普里茲灣是除威德爾海、羅斯海之外,南大洋印度洋扇形區(qū)中最大海灣,是典型的邊緣海冰區(qū)。然而相對于研究人員在威德爾海、羅斯海海域所開展的相關(guān)研究,有關(guān)普里茲灣生物硅關(guān)鍵過程的認(rèn)知還是非常匱乏、非常缺乏系統(tǒng)性。針對普里茲灣生物硅研究的現(xiàn)狀,本論文以普里茲灣水體以及沉積物中生物硅為重點研究對象,以2002-2013年間獲取的中國南極科學(xué)考察相關(guān)現(xiàn)場數(shù)據(jù)以及實驗?zāi)M數(shù)據(jù)為基礎(chǔ),系統(tǒng)研究南大洋普里茲灣生物硅循環(huán)的關(guān)鍵過程,進(jìn)而驗證并量化生物硅的生產(chǎn)、輸出以及再循環(huán)效率,探討普里茲灣生物硅的保存機(jī)制。本論文主要研究內(nèi)容和主要研究結(jié)果如下: 1.普里茲灣表層水體中生物硅的生產(chǎn)及其在表層水體中的輸出過程。 (1)在2013年夏季,普里茲灣海域表層PBSi的含量在0.38-8.62μmol/dm3之間變化,分布趨勢呈現(xiàn)67°S以南灣內(nèi)含量明顯高于67°S以北的灣外海域,與表層Chla的分布基本吻合。垂向分布上PBSi同樣與Chla的分布非常相近,呈現(xiàn)明顯的50m層以內(nèi)含量高于50m以下水體含量的趨勢。與以往航次的數(shù)據(jù)相比,PBSi的含量存在一定的年際變化,但是在普里茲灣的分布情況基本相似。 (2)在普里茲灣生物因子是PBSi含量分布的主控因子。根據(jù)不同年份PBSi的平均含量與Chla平均含量數(shù)據(jù)顯示,普里茲灣灣內(nèi)灣外海域表層PBSi平均含量與Chla的平均含量的年際變化非常一致。氣候變化會對普里茲灣的海冰變化產(chǎn)生一定的影響,而相應(yīng)的普里茲灣浮游植物在數(shù)量種群結(jié)構(gòu)上也會隨海冰變化產(chǎn)生一定的改變,這一結(jié)果對PBSi的含量與分布也產(chǎn)生相應(yīng)的影響。 (3)普里茲灣灣內(nèi)表層水體中Si/C平均比值為0.21與報道中的南大洋的平均比值非常相近。隨著水層深度的增加灣外以及灣內(nèi)水體中Si/C比值都發(fā)生了降低,表明在普里茲灣上層水體生物硅和有機(jī)碳輸出過程存在退耦關(guān)系,有機(jī)碳的降解轉(zhuǎn)化過程不及生物硅的溶出過程,從而使得50m水體PBSi的輸出低于POC,因此最終導(dǎo)致Si/C比值降低。 (4)利用硅酸鹽的季節(jié)性消耗量估算出普里茲灣上表層水體中硅酸鹽的消耗速率,即生物硅的生產(chǎn)速率,獲取的結(jié)果為:14.54mmol/m2/d;利用Si/C比值以及現(xiàn)場實測初級生產(chǎn)力數(shù)據(jù)估算出的生物硅生產(chǎn)速率則為20.20mmol/m2/d。與南大洋其他海域相比屬于較高的生物硅生產(chǎn)水平。利用現(xiàn)場硅穩(wěn)定同位素培養(yǎng)實驗數(shù)據(jù)結(jié)合水體中累積的生物硅含量變化獲得的結(jié)果表明,在普里茲灣灣內(nèi)表層水體中生產(chǎn)的生物硅89%由表層輸出,而在50m水體向下輸送至200m水體中的生物硅為36%,表明生物硅在表層生產(chǎn)后僅有少部分發(fā)生溶出,而在隨后的向更深層的200m水體輸送過程中已經(jīng)發(fā)生了大量的溶出,占表層生產(chǎn)的64%。 2.普里茲灣中深層水體中生物硅的垂直輸送過程。 (1)普里茲灣灣內(nèi)冰間湖區(qū)域沉降顆粒物主要以硅藻聚合體為主,其間也夾雜著一些未聚合的硅藻單體。而普里茲灣灣外沉降顆粒物除了硅藻聚合體之外,在通量峰值的夏季住囊類聚集體也不容忽視。普里茲灣灣內(nèi)與灣外區(qū)域沉降顆粒類型存在一定的差異,反映了普里茲灣不同區(qū)域上層水體顆粒物來源以及相關(guān)生物地球化學(xué)過程的差異。 (2)根據(jù)我們獲取的三個調(diào)查年份的顆粒物組成數(shù)據(jù)顯示,生源組分是顆粒物的主要組成。在顆粒物生源組分中,做出主要貢獻(xiàn)的是生物硅通量。生物硅有機(jī)碳等生源物質(zhì)的通量主要受上層水體浮游植物生長的影響,呈現(xiàn)明顯的季節(jié)性變化。通量的峰值均出現(xiàn)在夏季浮游植物旺發(fā)的1-2月份之間,最低值出現(xiàn)在冬季的5-7月份。在夏季相同時期,灣內(nèi)冰間湖區(qū)域生物硅通量值明顯高于灣外深海海域生物硅通量值。 (3)氣候變化對普里茲灣表層水體浮游植物生長的影響,在深層水體中的生源物質(zhì)通量也有相應(yīng)的響應(yīng)。在2009/2010年由于受到厄爾尼諾影響,在12月份普里茲灣的浮游植物旺發(fā)已經(jīng)達(dá)到最大并持續(xù)到一月份才開始減弱,而2010/2011年夏季則受到拉尼娜事件影響使得捕獲器布放的冰間湖區(qū)域浮游植物生長明顯低于2009/2010年的同期。由此導(dǎo)致2009/2010夏季以及2010/2011夏季生物硅的通量呈現(xiàn)明顯的年際差異。 (4)2009/2010年以及2010/2011年夏季普里茲灣深層水中顆粒物Si/C比值分別為2.5和1.8,明顯大于200m水層中Si/C的比值,表明顆粒物由上層水體輸出后在隨后向深層水體輸送的過程中,有機(jī)碳發(fā)生再礦化的程度遠(yuǎn)大于生物硅的溶出,這主要是由于浮游植物由表層的輸出后逐漸老化直至死亡,大部分硅藻僅剩下空殼,此時有機(jī)碳發(fā)生快速的降解,從而導(dǎo)致深層水體中Si:C比值明顯的提高。 (5)根據(jù)普里茲灣灣內(nèi)深層水體中(480m)生物硅的通量與表層生物硅的生產(chǎn)量比值估算出普里茲灣水體中生物硅的保存效率,2009/2010年夏季為26%,2010/2011年夏季為24%,二者平均為25%,表明表層生產(chǎn)的生物硅在沉降到沉積物之前已經(jīng)有75%的生物硅發(fā)生溶出。由于普里茲灣灣內(nèi)表層水體中生產(chǎn)的生物硅在50-200m以內(nèi)的水體以及發(fā)生了大規(guī)模的溶出(64%溶出),在200m以下水體輸送過程中雖然溶出繼續(xù),但是其程度明顯小于上層水體。 3.普里茲灣表層沉積物中生物硅再循環(huán)過程。 (1)普里茲灣表層沉積物中生物硅的含量在4.89-75.32%之間變化,在緯向空間分布上,生物硅含量呈現(xiàn)明顯的67°S以南灣內(nèi)陸架區(qū)灣內(nèi)冰緣區(qū)67°S以北的灣外深海區(qū)的分布形式。普里茲灣不同緯度柱狀沉積物中生物硅的分布結(jié)果表明在67°S以北的灣外柱狀沉積物中生物硅的分布趨勢與灣內(nèi)有一定的差別。在灣外66.50S沉積物中總體上講生物硅含量隨深度的增加逐漸升高,且含量波動不大,而在灣內(nèi)67.5°S柱狀沉積物中,生物硅含量波動明顯,總體上是隨深度增加是降低的趨勢。 (2)表層沉積物中生物硅和有機(jī)碳呈現(xiàn)較為相似的空間分布,Si/C元素摩爾比值Si/C元素摩爾比值在4.60-18.48之間變化,遠(yuǎn)遠(yuǎn)大于深層水體以及200m水體顆粒物中Si/C比值。有機(jī)碳的垂向分布與生物硅有一定的差異,表明二者在沉積埋葬過程中所經(jīng)歷的物理、化學(xué)及生物反應(yīng)的差異。 (3)普里茲灣沉積物間隙水中DSi的含量變化范圍較大,其中表層間隙水中DSi的含量在118.15-552.00μmol/dm3之間變化,平均為352.43μmol/dm3,最高值出現(xiàn)在灣內(nèi)陸架區(qū),最低值出現(xiàn)在灣外陸坡與陸架交界處站位。大部分站位沉積物間隙水中DSi均呈現(xiàn)類似的垂向分布,即在靠近沉積物-水界面DSi有明顯的濃度梯度,由上覆水中的平均含量75.19μmol/dm3,升高到表層間隙水中的352.43μmol/dm3,而在福拉姆淺灘區(qū)的站位上覆水硅酸鹽含量與表層間隙水含量相差不大。(4)在普里茲灣沉積物海水界面之下,隨深度增加DSi含量分布呈指數(shù)增加,隨后逐漸達(dá)到一個趨于穩(wěn)定的漸進(jìn)濃度Cd,與沉積物中生物硅的垂向分布呈現(xiàn)相反變化趨勢,表明在普里茲灣生物硅逐漸埋葬的過程中快速溶出是主要過程,使得間隙水中硅酸鹽快速富集。普里茲灣間隙水中硅酸鹽Cd的高值出現(xiàn)在灣內(nèi)陸架區(qū)的67.5°S和68°S的站位,分別為644.01、65126μmol/dm3,而灣內(nèi)冰緣區(qū)附近站位的Cd明顯低于陸架區(qū)。最低值出現(xiàn)在灣口福拉姆淺灘區(qū)66.86°S站位的Cd值為47284μmol/dm3,。 (5)利用一維模型法估算得到在普里茲灣沉積物中硅酸鹽的釋放通量,結(jié)果表明在普里茲灣灣內(nèi),沉積物中硅酸的釋放通量分布呈現(xiàn)由灣口陸坡區(qū)向灣內(nèi)降低的趨勢,通量最高值115mmol/m2/d出現(xiàn)在靠近福拉姆淺灘的灣口區(qū)站位,最低值出現(xiàn)在灣內(nèi)陸架區(qū)67.5°S站位釋放通量為0.30mmol/m2/d,F(xiàn)場實驗法獲取的陸架區(qū)站位硅酸鹽釋放速率最低為0.45mmol/m2/d,而在冰緣區(qū)和灣口區(qū)的培養(yǎng)實驗獲取的釋放速率分別為063mmol/m2/d和0.60mmol/m2/d?傮w上講與模型法估算的相應(yīng)站位通量值變化范圍相近,DSi的擴(kuò)散通量主要來源于沉積物上層5cm以內(nèi)的生物硅的溶出。4.普里茲灣表層沉積物中生物硅的溶出與保存機(jī)制。 (1)利用batch實驗獲取沉積物生物硅溶解性質(zhì)的研究結(jié)果顯示,實驗室條件下陸架區(qū)和冰緣區(qū)表層沉積物中生物硅的溶解度分別為1936μmol/dm3,1540μmol/dm3。在冰緣區(qū)站位5cm下沉積物中生物硅的溶出平衡濃度明顯低于5cm以上的沉積物。而在陸架區(qū)站位除在5cm內(nèi)有較明顯的降低外,在5-20cm之間生物硅的溶解度隨深度的增加相對與上層變化較小。對比普里茲灣沉積物間隙水中DSi的垂向分布研究結(jié)果,間隙水Cd的平均值明顯低于實驗室獲取的溶解度。 (2)根據(jù)Batch實驗數(shù)據(jù)計算普里茲灣陸架區(qū)和冰緣區(qū)表層沉積物中生物硅的實驗室溶出速率分別為201μmol/h/g,1.09μmol/h/g。在不同區(qū)域0-5cm的沉積物范圍內(nèi),生物硅溶出解速率隨深度增加明顯降低,5cm以下沉積物中則基本變化不大,總體上講在實驗室模擬實驗中普里茲灣沉積物中表層沉積物生物硅的溶出速率要高于深層沉積物,表明在沉積物表層(0-4.5cm)生物硅的溶出要明顯快于深層沉積物。 (3)在普里茲灣沉積物中生物硅的埋葬通量在0.09-2.06mol/m2/a之間,最高埋葬量出現(xiàn)在灣內(nèi)陸架區(qū)的67.5-680S的區(qū)域,最低值出現(xiàn)在灣口福拉姆淺灘區(qū)。在普里茲灣生物硅保存效率存在很明顯的空間差異,在灣口淺灘區(qū)生物硅的保存效率僅為18%,遠(yuǎn)遠(yuǎn)低于灣內(nèi)陸架區(qū)的94%以及冰緣區(qū)的83%。普里茲灣沉積物中生物硅的沉積通量平均值與南大洋其他海域相比略低,但是由于再循環(huán)通量最低,因此在普里茲灣沉降到海底的生物硅在沉積物的79%埋葬效率明顯高于其他研究區(qū)域。這些數(shù)據(jù)也再次證明在南大洋沉積物中生物硅的保存具有明顯的空間差異。 (4)普里茲灣沉積物中生物硅的最終保存不僅與上層水體硅藻的初級生產(chǎn)有關(guān),同時還受到沉降及埋葬過程中的保存機(jī)制控制。在普里茲灣沉積速率以及生物擾動對普里茲灣生物硅的早期成巖過程以及最終保存會有實質(zhì)性及潛在性的影響,此外陸架區(qū)沉積物中A1與硅藻殼體的作用可能已經(jīng)不僅僅是在表面的吸附,而是嵌入到了硅藻骨架中,從而使得生物硅的溶解動力學(xué)性質(zhì)和熱力學(xué)性質(zhì)均發(fā)生了改變。在普里茲灣沉積物中生物硅的保存是以上三種因素綜合作用的結(jié)果。 5.普里茲灣生物硅收支平衡估算。 (1)在普里茲灣上層水體生物硅年生產(chǎn)速率為3.64mol/m2/a,與Treguer等人的報道中南大洋平均的年生產(chǎn)力235mol/m2/a較為相近。真光層生產(chǎn)的生物硅向更深層水體輸送的過程中,有64%發(fā)生溶解再循環(huán)回到水體中,因此表層生產(chǎn)出的生物硅以1.31mol/m2/a的輸出通量繼續(xù)向深海輸送,同樣與整個南大洋的平均輸出通量148mol/m2/a相比較為接近。 (2)在普里茲灣到達(dá)沉積物海水界面的生物硅通量為1.09mol/m2/a,經(jīng)過沉積物-海水界面的早期成巖轉(zhuǎn)化過程后,埋葬的生物硅為0.86mol/m2/a,相對于在上層水體中生物硅的輸出通量值,埋葬在沉積物中的生物硅占了66%,明顯高于南大洋平均保存效率26%。
[Abstract]:The sea ice area of the Southern Ocean occupies an important position in the global change. In the global biogeochemical cycle, the elements of carbon and other sources play an important role in the global biogeochemical cycle. In the Southern Ocean, diatom is the main producer of the ecosystem, and is an important part of the biological pump. More than half of the organic carbon flux sent to the deep sea is diatom. Therefore, the study of the key biogeochemical processes in the Southern Ocean silicon cycle helps us to better understand the temporal and spatial changes in the carbon cycle of the Southern Ocean. The bay is the largest Bay in the India ocean sector of the Southern Ocean except the wader sea, Ross Sea, and the Southern Ocean, and is a typical marginal sea ice area. The research on the Del sea and the Ross Sea sea area is still very scarce and very lack of systematicness in the critical process of biosilicon in the bay of pre - Bay. On the basis of field data and experimental data, the key process of bio silicon cycling in the Southern Ocean is systematically studied, and the production, output and recycling efficiency of bio silicon are verified and quantified. The preservation mechanism of biogenic silicon in the bay is discussed. The main research content and main research results of this paper are as follows:
1. the production of biogenic silicon in the surface water of the Gulf of praise and its output process in the surface water.
(1) in the summer of 2013, the content of PBSi in the surface of the waters of the bay of Pro bays varies between 0.38-8.62 and mol/dm3. The distribution trend is 67 degree S, and the content of the South Bay is obviously higher than that of the Gulf of 67 [67]. The distribution is basically consistent with the distribution of the surface Chla. The vertical distribution of PBSi is also very similar to the distribution of Chla, showing an obvious higher than the content of the 50m layer. The trend of water content below 50m. Compared with the previous voyage data, the content of PBSi has a certain interannual variation, but the distribution in the bay is basically similar.
(2) the biological factor is the main controlling factor of the distribution of PBSi in the bay. According to the average content of PBSi and the average content of Chla in different years, the average content of the surface PBSi in the sea area outside Bay Bay is very consistent with the annual change of the average content of Chla. The climate change will produce a certain shadow on the sea ice changes in the bay. The corresponding changes in the number of population structure in the number population structure of the corresponding phytoplankton in the number of population also have a corresponding effect on the content and distribution of PBSi.
(3) the average ratio of Si/C in the surface water body of the bay Bay is 0.21 and the average ratio of the South Ocean in the report. With the increase of water depth, the Si/C ratio in the Bay and the water in the bay is reduced, indicating that there is a decoupling relationship between the biological silicon and organic carbon output process in the upper water body of the Bay, and the degradation of organic carbon in the upper water body of the bay. The transformation process is less than the dissolution process of biogenic silicon, which makes the output of PBSi in 50m water body below POC, which ultimately leads to the decrease of Si/C ratio.
(4) using the seasonal consumption of silicate to estimate the consumption rate of silicate in the surface water body on the surface water of the Bay, that is, the production rate of biosilicon, the result is 14.54mmol/m2/d, and the production rate of biosilicon estimated by the ratio of Si/C and the field measured primary productivity data is 20.20mmol/m2/d. and the other seas of the South Ocean. Compared with the higher biosilicon production level, the results obtained by using the field silicon stable isotope culture experimental data combined with the accumulation of biosilicon content in the water show that the bio silicon 89% produced in the surface water body of the bay Bay is exported from the surface, and the biosilicon is 36% in the 50m water body to the water body of the 200m water body. Only a few parts of the crystalline silicon are dissolved in the surface of the surface, and a large amount of dissolution has occurred during the subsequent transportation to the deeper 200m water body, which accounts for the 64%. of the surface layer.
2. the vertical transport process of biogenic silicon in the deep and middle waters of the river range.
(1) the particulates in the interglacial Lake area in the bay Bay are mainly diatom aggregates and are also mixed with some unpolymerized diatom monomers. In addition to the diatom aggregates, the outer settlement particles in the parezi Bay Bay can not be ignored at the peak of the peak flux in summer. There are some differences in types, reflecting the differences of particulate matter sources and related biogeochemical processes in the upper waters of different areas of the Gulf.
(2) according to the data of the particle composition of the three survey years we obtained, the source component is the main composition of the particulate matter. In the source component of the particle, the main contribution is the bio silicon flux. The flux of bio silicon organic carbon and other raw materials is mainly influenced by the growth of floating plant in the upper water body, showing a significant seasonal variation. The peak value of fluxes appeared in the summer of 1-2 months in the summer, and the minimum value appeared in the month of the winter of 5-7. In the same period of summer, the value of the bio silicon flux in the ice lake area in the Bay was obviously higher than that of the biological silicon flux in the deep sea sea.
(3) the effect of climate change on the growth of phytoplankton in the surface waters of the bay of pre - Bay is also responsive to the source material flux in the deep water body. In 2009/2010, in December, the phytoplankton in the bay of Pro bay had reached the maximum and continued to decline until January in the summer of December due to the El Nino effect. The effect of La Nina incident on the growth of phytoplankton in the interglacial Lake area of the catcher was significantly lower than that in the same period of 2009/2010 years, resulting in obvious annual differences in the summer and summer 2010/2011 fluxes in 2009/2010 and in the summer.
(4) the Si/C ratio of particles in deep water in 2009/2010 and 2010/2011 is 2.5 and 1.8 respectively in summer, which is obviously greater than the ratio of Si/C in the 200m water layer. It shows that the degree of organic carbon re mineralization is much greater than that of the biological silicon in the process of transporting the particles from the upper water body to the deep water body. The phytoplankton gradually aging from the surface of the surface to death, and most of the diatoms remained only empty shells. At this time, the organic carbon was degraded rapidly, which resulted in a significant increase in the Si:C ratio in the deep water body.
(5) the conservation efficiency of biosilicon in the waters of the bay is estimated by the ratio of the flux of 480m biological silicon to the production of the surface biogenic silicon in the deep waters of the bay Bay, 26% in summer and 24% in the summer of 2009/2010, and 25% in the two in the summer of 2010/2011, indicating that the biological silicon produced in the surface layer has 75% before settling to the sediment. Biogenic silicon dissolved in the water body produced in the surface water body of the bay Bay in the bay of 50-200m and dissolved (64% dissolve out) in a large scale (dissolve out) in the water body below 200m, although the dissolution continues in the process of water transport below the water body, but its degree is obviously less than the upper water body.
3. the biogenic silicon recycling process in the surface sediments of the Gulf of praise.
(1) the content of biogenic silicon in the surface sediments of pryd Bay varies between 4.89-75.32%, and in the zonal space distribution, the content of biological silicon shows an obvious 67 degree S distribution in the deep sea area outside the Gulf of 67 [67] in the interglacial region of the South Bay area. The distribution of the biological silicon in the columnar sediments at the different latitude of pryd Bay shows that at 67 degree S The distribution trend of bio silicon in the columnar sediments in the north of the bay is different from that in the bay. In the 66.50S sediments outside the Bay, the content of biological silicon increases with the depth, and the content fluctuates little. In the 67.5 S columnar sediments in the Bay, the content of the bio silicon content is obvious, and in general it decreases with the increase of depth. Trend.
(2) the spatial distribution of biological silicon and organic carbon in the surface sediments, the molar ratio of the molar ratio of Si/C elements to the ratio of Si/C elements to 4.60-18.48, is far greater than the Si/C ratio in the deep water and 200m water particles. The vertical distribution of organic carbon is different from that of the biological silicon, indicating that the two are in the process of deposition and burial. Differences in physical, chemical and biological reactions experienced.
(3) the change range of DSi content in the interstitial water of the Bay sediment is large, and the content of DSi in the surface interstitial water varies between 118.15-552.00 and mol/dm3, with an average of 352.43 mu mol/dm3, the highest value appears in the Bay inland shelf, and the lowest value appears at the intersection of the continental slope and the shelf at the boundary of the continental shelf. Most of the station sediments are in the interstitial water DSi A similar vertical distribution is presented, that is, there is an obvious concentration gradient near the sediment water interface DSi, from the average content of 75.19 mu mol/dm3 in the overlying water to 352.43 mu mol/dm3 in the surface interstitial water, but there is little difference between the silicate content and the surface gap water content in the Forlam shoal area. (4) the sediment in the Bay sediments. Under the seawater interface, the distribution of DSi content increased exponentially with depth, and then gradually reached a stable gradual concentration Cd, which was opposite to the vertical distribution of the biosilicon in the sediments, indicating that the rapid dissolution was the main process during the gradual burial process of the biogenic silicon in the Bay, which made the silicate in the interstitial water rapid. The high value of silicate Cd in the interstitial water of preconcentration Bay appears at the station of 67.5 S and 68 S in the Bay inland shelf, which is 644.0165126 mol/dm3 respectively, while the Cd of the station near the ice edge of the bay is obviously lower than the continental shelf. The lowest value appears at the 47284 u mol/dm3 of the bay mouth Rahm shoal 66.86 degree S station.
(5) the one dimensional model method is used to estimate the release fluxes of silicate in the sediments of the Bay sediments. The results show that the release flux of silicic acid in the sediments is reduced from the slope of the bay to the Bay in the bay Bay, and the maximum flux of 115mmol/m2/d appears at the Bay mouth area near the flats. The release rate of the 67.5 degree S station in the shelf area of the Bay shelf is now minimum of 0.45mmol/m2/d for the site of the shelf area obtained by the 0.30mmol/m2/d. field test method, while the release rates obtained in the periglacial and bay mouth areas are 063mmol/m2/d and 0.60mmol/m2/d., respectively, and the corresponding site flux estimated by the model method. The range of value change is similar. The diffusion flux of DSi is mainly derived from the dissolution and preservation mechanism of biological silicon in the surface sediments of.4. Bay, which is within 5cm of the upper layer of the sediment.
(1) the results of the study of the dissolution properties of sediment biosilicon by batch experiment showed that the solubility of bio silicon in the surface sediments of the continental shelf and the periginum area under the laboratory conditions was 1936 mu mol/dm3., respectively, and the concentration of the dissolved organic silicon in the sediments of the margin of the periginum was lower than that of the sediments above 5cm. In addition to the obvious decrease in the shelf position of the shelf, the solubility of the biogenic silicon between 5-20cm is relatively small with the upper level. Compared with the vertical distribution of DSi in the interstitial water of the sediment Bay, the average value of the gap water Cd is obviously lower than the solubility of the DSi in the laboratory.
(2) according to the Batch experimental data, the laboratory dissolution rate of biogenic silicon in the surface sediments of the perige Bay and periginum area is 201 mu, respectively, and 1.09 mu mol/h/g. is in the range of 0-5cm in different regions. The dissolution rate of biosilicon is obviously decreased with the depth of the sediments, and the basic changes in the sediments below 5cm are not significant. In the laboratory simulation experiments, the dissolution rate of the surface sediments in the sediments of the Bay sediments is higher than that in the deep sediments, indicating that the dissolution of the biological silicon in the surface of the surface of the sediments (0-4.5cm) is much faster than that in the deep sediments.
(3) the burial flux of biogenic silicon in the sediments of the bay is between 0.09-2.06mol/m2/a, the highest burial amount appears in the 67.5-680S area of the Bay inland shelf, the lowest value appears in the bay area Rahm shoal area.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:P736.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 于培松;扈傳昱;劉小涯;潘建明;張海生;;南極普里茲灣海域的近現(xiàn)代沉積速率[J];沉積學(xué)報;2009年06期

2 張海生,扈傳昱,潘建明,陳志強,陳波,劉小涯,盧勇;南極普里茲灣北部深海沉降顆粒物通量的季節(jié)性變化[J];地球化學(xué);2003年04期

3 秦亞超;;生物硅早期成巖作用研究進(jìn)展[J];地質(zhì)論評;2010年01期

4 史久新,趙進(jìn)平;中國南大洋水團(tuán)、環(huán)流和海冰研究進(jìn)展(1995—2002)[J];海洋科學(xué)進(jìn)展;2002年04期

5 孫軍,劉東艷,寧修仁,劉誠剛;2001/2002年夏季南極普里茲灣及其鄰近海域的浮游植物[J];海洋與湖沼;2003年05期

6 宋金明,李延;東海沉積物間隙水中硅酸鹽和硫酸鹽“擴(kuò)散-平流-反應(yīng)”模式的研究[J];海洋科學(xué);1991年01期

7 樂肯堂;普里茲灣及鄰近海區(qū)水團(tuán)和環(huán)流研究述評[J];海洋科學(xué);1995年02期

8 楊東方,李宏,張越美,孫英蘭,張經(jīng);淺析浮游植物生長的營養(yǎng)鹽限制及其判斷方法[J];海洋科學(xué);2000年12期

9 蒲書箴,董兆乾,胡筱敏,于非;普里茲灣海域的夏季上層水及其北向運動[J];極地研究;2000年03期

10 劉子琳,蔡昱明,寧修仁,劉誠剛,朱根海,王小谷;1999/2000年夏季南極普里茲灣及灣口區(qū)葉綠素a和初級生產(chǎn)力[J];極地研究;2001年01期

相關(guān)博士學(xué)位論文 前1條

1 鄭少軍;海冰和冰架對南極普里茲灣海洋過程的影響研究[D];中國海洋大學(xué);2011年

,

本文編號:2124764

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/2124764.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶16570***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com