深海熱液保真儲(chǔ)存裝置的研究與設(shè)計(jì)
本文選題:深海熱液 切入點(diǎn):儲(chǔ)存裝置 出處:《青島科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:自1979年人類第一次在深度超過(guò)2000m的海水區(qū)域中發(fā)現(xiàn)海底熱泉生物群落以來(lái),海底熱液的調(diào)查研究就成為國(guó)際上重大前沿?zé)狳c(diǎn)研究領(lǐng)域之一。目前國(guó)內(nèi)外已經(jīng)開(kāi)發(fā)了一系列的熱液采樣設(shè)備,這些采樣設(shè)備搭載HOV(載人潛水器)或ROV(深海有纜遙控機(jī)器人)等裝備就可進(jìn)入海底熱液口進(jìn)行取樣,并依靠搭載裝備將采集得到的熱液樣品帶回。在樣品的培養(yǎng)、保藏方面,國(guó)內(nèi)外也都研制出了一系列室內(nèi)高溫高壓反應(yīng)釜,實(shí)現(xiàn)了樣品的實(shí)驗(yàn)室培養(yǎng)、分析功能。但在熱液樣品的儲(chǔ)存以及樣品由采樣器到培養(yǎng)、觀測(cè)設(shè)備間的轉(zhuǎn)移方面,,目前都是由采樣器采樣后直接轉(zhuǎn)移給培養(yǎng)、觀測(cè)設(shè)備進(jìn)行分析,由于熱液采樣設(shè)備沒(méi)有長(zhǎng)時(shí)間保溫保壓的措施,限制了樣品的有效儲(chǔ)存,并且此種方式不能根據(jù)后續(xù)分析設(shè)備的需要對(duì)一次熱液采樣樣品進(jìn)行較長(zhǎng)時(shí)間間隔的多次、多種分析處理。本文針對(duì)這些問(wèn)題,開(kāi)展了深海熱液保真儲(chǔ)存裝置的研究與設(shè)計(jì)。該裝置可以對(duì)采樣器采集到的樣品進(jìn)行較長(zhǎng)時(shí)間保溫、保壓儲(chǔ)存,同時(shí)可以根據(jù)需要將樣品分時(shí)、分批轉(zhuǎn)移給熱液培養(yǎng)分析設(shè)備。本文主要研究?jī)?nèi)容如下: 1、本文通過(guò)查閱大量文獻(xiàn)資料,對(duì)熱液采樣、培養(yǎng)分析技術(shù)及設(shè)備的現(xiàn)狀和發(fā)展趨勢(shì)進(jìn)行了分析,并對(duì)其優(yōu)缺點(diǎn)進(jìn)行了探討。在此基礎(chǔ)上提出了本課題研究的目的及意義,確立了研究?jī)?nèi)容及技術(shù)路線。 2、對(duì)深海熱液保真儲(chǔ)存裝置進(jìn)行整體方案設(shè)計(jì),確定了包括結(jié)構(gòu)系統(tǒng)及控制系統(tǒng)的設(shè)計(jì)方案,并通過(guò)對(duì)樣品儲(chǔ)存機(jī)理的分析,確定了防腐、保溫、保壓、密封方式等保真儲(chǔ)存技術(shù)方案。 3、對(duì)儲(chǔ)存筒、連接器、蓄能筒、外筒等部件進(jìn)行了設(shè)計(jì),依據(jù)彈性失效準(zhǔn)則計(jì)算了筒體尺寸,用Workbench分析模塊對(duì)筒體進(jìn)行了強(qiáng)度分析及優(yōu)化設(shè)計(jì),消除了筒底的應(yīng)力集中現(xiàn)象。同時(shí)對(duì)活塞進(jìn)行了瞬態(tài)分析,分析了其在樣品的瞬間沖擊下的應(yīng)力應(yīng)變,最后對(duì)關(guān)鍵零部件的強(qiáng)度進(jìn)行了校核。 4、設(shè)計(jì)了以PLC為核心的控制系統(tǒng),該系統(tǒng)通過(guò)安裝在儲(chǔ)存筒端部的溫度、壓力傳感器監(jiān)測(cè)樣品狀態(tài),并通過(guò)顯示器實(shí)時(shí)顯示,同時(shí)根據(jù)反饋情況實(shí)現(xiàn)閉環(huán)控制,最后根據(jù)I/O點(diǎn)的分配編寫(xiě)了控制程序。 5、對(duì)該儲(chǔ)存裝置的樣品轉(zhuǎn)移過(guò)程進(jìn)行了動(dòng)態(tài)特性研究,首先通過(guò)理論計(jì)算分析了節(jié)流口內(nèi)徑d,節(jié)流口長(zhǎng)度L與樣品轉(zhuǎn)移時(shí)間T的關(guān)系,同時(shí)用AMESim液壓仿真軟件對(duì)樣品轉(zhuǎn)移過(guò)程進(jìn)行了仿真分析研究,結(jié)果表明節(jié)流口孔徑對(duì)轉(zhuǎn)移時(shí)間的影響較大,仿真分析結(jié)果與理論計(jì)算的結(jié)果一致。
[Abstract]:Since 1979, when humans first discovered marine hot spring biota in a sea area more than 2000m deep, The investigation and research of seafloor hydrothermal solution has become one of the most important hot research fields in the world. At present, a series of hydrothermal sampling equipments have been developed at home and abroad. These sampling equipment carry equipment such as HOV (manned submersible) or ROV (deep-sea cable remote control robot) to enter the submarine hydrothermal outlet for sampling, and rely on carrying equipment to bring back the collected hydrothermal samples. In terms of sample culture and preservation, Both at home and abroad, a series of indoor high temperature and high pressure reactors have been developed to realize the laboratory culture and analysis of samples. However, in the storage of hydrothermal samples and the transfer of samples from sampler to culture and observation equipment, At present, all samples are transferred directly from sampler to culture, and the observation equipment is analyzed. Because the hydrothermal sampling equipment does not have the measure of keeping pressure for a long time, it limits the effective storage of samples. Moreover, this method can not be used to analyze and deal with the sample in a long time interval according to the need of the subsequent analysis equipment. This paper aims at these problems. The research and design of the deep-sea hydrothermal fidelity storage device is carried out. The device can keep the samples collected by the sampler for a long time and keep the pressure in storage. At the same time, the samples can be divided into time and time according to the need. Batch transfer to hydrothermal culture analysis equipment. The main contents of this paper are as follows:. 1. Through consulting a lot of literature, the present situation and development trend of hydrothermal sampling, culture analysis technology and equipment are analyzed, and their advantages and disadvantages are discussed. On the basis of this, the purpose and significance of this research are put forward. The research content and technical route are established. 2. The whole scheme design of deep-sea hydrothermal fidelity storage device is carried out, and the design scheme including structure system and control system is determined, and through the analysis of sample storage mechanism, the anticorrosion, insulation and pressure preservation are determined. Sealing and other true storage technology. 3. The storage tube, connector, energy storage tube and outer cylinder are designed, the size of the cylinder is calculated according to the elastic failure criterion, and the strength analysis and optimization design of the cylinder are carried out with Workbench analysis module. The stress concentration in the bottom of the cylinder is eliminated, and the transient analysis of the piston is carried out, and the stress and strain of the piston under the instantaneous impact of the sample are analyzed. Finally, the strength of the key parts is checked. 4. The control system with PLC as the core is designed. The system monitors the state of the sample through the temperature and pressure sensor installed at the end of the storage tube, and displays the state of the sample in real time through the display. At the same time, the closed-loop control is realized according to the feedback. Finally, the control program is written according to the distribution of I / O points. 5. The dynamic characteristics of the sample transfer process of the storage device are studied. Firstly, the relationship between the internal diameter d, length L of the throttle and the sample transfer time T is analyzed by theoretical calculation. At the same time, the AMESim hydraulic simulation software is used to simulate the sample transfer process. The results show that the orifice aperture has a great influence on the transfer time, and the simulation results are consistent with the theoretical calculation results.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P742
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳鷹,葉瑛,楊燦軍;Integration of Real-Time Chemical Sensors for Deep Sea Research[J];China Ocean Engineering;2005年01期
2 焦鑫;柳益群;周鼎武;汪雙雙;南云;周寧超;楊焱鈞;;“白煙型”熱液噴流巖研究進(jìn)展[J];地球科學(xué)進(jìn)展;2013年02期
3 劉昕明;林榮澄;黃丁勇;;深海熱液口化能合成共生作用的研究進(jìn)展[J];地球科學(xué)進(jìn)展;2013年07期
4 沈國(guó)泉;楊燦軍;;基于有限元分析的深海熱液保真采樣器結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與制造;2005年12期
5 沈國(guó)泉,楊燦軍;基于有限元分析的深海熱液保真采樣器保溫方案設(shè)計(jì)[J];機(jī)械設(shè)計(jì);2005年01期
6 黃中華;劉少軍;金波;陳鷹;;深海浮游微生物濃縮保壓取樣技術(shù)[J];機(jī)械工程學(xué)報(bào);2006年03期
7 呂欣妍;齊亮;;基于西門(mén)子PLC的消防監(jiān)控系統(tǒng)設(shè)計(jì)[J];科技信息;2012年18期
8 張康智;劉凌;;液壓系統(tǒng)仿真軟件研究[J];煤礦機(jī)械;2009年03期
9 張巖峰;;西門(mén)子PLC在電氣控制中的應(yīng)用[J];科技風(fēng);2013年05期
10 宋鵬云;軟填料密封機(jī)理分析[J];潤(rùn)滑與密封;2000年06期
相關(guān)博士學(xué)位論文 前2條
1 李懷明;現(xiàn)代海底熱液硫化物礦體內(nèi)部流體過(guò)程的模擬實(shí)驗(yàn)研究[D];中國(guó)海洋大學(xué);2008年
2 吳世軍;深海熱液保真采樣機(jī)理及其實(shí)現(xiàn)技術(shù)研究[D];浙江大學(xué);2009年
本文編號(hào):1602534
本文鏈接:http://www.sikaile.net/kejilunwen/haiyang/1602534.html