基于GIS的月平均氣溫空間化方法的比較研究
發(fā)布時間:2018-08-08 17:00
【摘要】:使用1961-2000年全國743個氣象臺站常規(guī)氣象觀測資料,利用IDW、Kriging以及Spline這3種常用空間插值方法,以及復雜地形下月平均氣溫分布式模型,生成全國的月平均氣溫空間分布圖,并同時與中國氣象數(shù)據(jù)網(wǎng)提供的中國地面氣溫月值0.5°×0.5°格點數(shù)據(jù)集進行比較,結果表明:3種插值方法(IDW、Kriging、Spline)、格點數(shù)據(jù)集與氣溫分布式模型的絕對誤差分別為1.59℃、1.54℃、1.99℃、1.40℃、0.56℃,氣溫分布式模型的精度最高,而且其空間分辨率最高,模擬的穩(wěn)定程度較好,能夠很好地體現(xiàn)氣溫隨地形的變化特征。因此,氣溫分布式模型對于平均氣溫的模擬性能最好。
[Abstract]:Using the routine meteorological observation data of 743 meteorological stations in China from 1961 to 2000, using the spatial interpolation methods of IDW Kriging and Spline, as well as the distributed model of monthly mean temperature in complex terrain, the spatial distribution map of the monthly mean temperature of the whole country is generated. At the same time, it is compared with the data set of 0.5 擄脳 0.5 擄lattice temperature in China provided by China Meteorological data Network. The results show that the absolute error between the grid data set and the temperature distributed model is 1.59 鈩,
本文編號:2172435
[Abstract]:Using the routine meteorological observation data of 743 meteorological stations in China from 1961 to 2000, using the spatial interpolation methods of IDW Kriging and Spline, as well as the distributed model of monthly mean temperature in complex terrain, the spatial distribution map of the monthly mean temperature of the whole country is generated. At the same time, it is compared with the data set of 0.5 擄脳 0.5 擄lattice temperature in China provided by China Meteorological data Network. The results show that the absolute error between the grid data set and the temperature distributed model is 1.59 鈩,
本文編號:2172435
本文鏈接:http://www.sikaile.net/kejilunwen/dizhicehuilunwen/2172435.html
最近更新
教材專著