非關(guān)系型與關(guān)系型空間數(shù)據(jù)庫對比分析與協(xié)同應(yīng)用研究
本文選題:空間數(shù)據(jù)庫 + 空間數(shù)據(jù)管理; 參考:《首都師范大學(xué)》2013年碩士論文
【摘要】:近年來隨著遙感技術(shù)、地理信息系統(tǒng)技術(shù)的不斷發(fā)展,GIS的應(yīng)用領(lǐng)域越發(fā)廣泛,GIS中空間數(shù)據(jù)量呈指數(shù)級別增長,尤其是大數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)的大量出現(xiàn),對常用的關(guān)系型或?qū)ο箨P(guān)系型數(shù)據(jù)庫的空間數(shù)據(jù)管理能力提出了巨大挑戰(zhàn)。 隨著Web2.0時(shí)代的到來,為滿足爆炸式增長的互聯(lián)網(wǎng)的應(yīng)用需求,非關(guān)系型數(shù)據(jù)庫這一全新的數(shù)據(jù)管理技術(shù)應(yīng)運(yùn)而生。非關(guān)系型數(shù)據(jù)庫在存儲、查詢和管理大數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)方面具有優(yōu)勢。本文對關(guān)系型和非關(guān)系型空間數(shù)據(jù)庫進(jìn)行對比研究,從中選出MongoDB、ArcSDE(Oracle)和PostGIS作為代表,從體系架構(gòu)、存儲機(jī)制和操作方式等方面進(jìn)行了分析,通過選定定性和定量評價(jià)因子建立評價(jià)體系,并開展相關(guān)實(shí)驗(yàn),指出非關(guān)系和關(guān)系型數(shù)據(jù)空間數(shù)據(jù)庫空間數(shù)據(jù)管理的特點(diǎn);在此基礎(chǔ)上,設(shè)計(jì)了非關(guān)系型和關(guān)系型數(shù)據(jù)庫協(xié)同應(yīng)用方案,并基于OGC的簡單要素模型和面向?qū)ο蠛徒M件技術(shù),對其中的關(guān)鍵技術(shù)進(jìn)行實(shí)現(xiàn);將協(xié)同應(yīng)用方案在地震救援?dāng)?shù)據(jù)管理系統(tǒng)中進(jìn)行了應(yīng)用并對結(jié)果進(jìn)行了評價(jià)分析。 本文主要的研究結(jié)論和成果如下: 1.通過建立的定量和定性的評價(jià)指標(biāo)體系,對MongoDB、ArcSDE和PostGIS進(jìn)行對比研究,得出在相同數(shù)據(jù)大小下MongoDB存儲空間矢量數(shù)據(jù)較ArcSDE和PostGIS消耗時(shí)間少,而存儲相同大小柵格數(shù)據(jù)ArcSDE的速率最快,且磁盤消耗少:在空間查詢時(shí),相同數(shù)據(jù)范圍MongoDB的查詢效率高于其他兩者,范圍越大,優(yōu)勢越明顯。 2.根據(jù)對比分析的結(jié)果,提出MongoDB存儲管理矢量空間數(shù)據(jù)和空間元數(shù)據(jù),ArcSDE存儲管理柵格數(shù)據(jù)的協(xié)同應(yīng)用方案;并對協(xié)同中的非關(guān)系型數(shù)據(jù)庫空間數(shù)據(jù)存儲,關(guān)系型和非關(guān)系型空間數(shù)據(jù)庫存儲數(shù)據(jù)的遷移和采用統(tǒng)一管理方式對兩者進(jìn)行管理的關(guān)鍵技術(shù)進(jìn)行了實(shí)現(xiàn)。 3.根據(jù)地震救援?dāng)?shù)據(jù)管理的需求,將非關(guān)系型數(shù)據(jù)庫和關(guān)系型數(shù)據(jù)庫協(xié)同方案應(yīng)用于地震救援?dāng)?shù)據(jù)管理系統(tǒng)中。采用MongoDB和ArcSDE協(xié)同應(yīng)用對系統(tǒng)進(jìn)行了設(shè)計(jì)和實(shí)現(xiàn),實(shí)現(xiàn)結(jié)果表明非關(guān)系型和關(guān)系型數(shù)據(jù)庫協(xié)同提高了地震救援?dāng)?shù)據(jù)的存儲和查詢效率,降低了數(shù)據(jù)存儲的磁盤消耗,且使得數(shù)據(jù)庫的更新和擴(kuò)展變的更加方便。能更好地滿足地震救援?dāng)?shù)據(jù)管理的需求。
[Abstract]:In recent years, with the development of remote sensing technology and the continuous development of GIS technology, the spatial data volume in GIS is increasing exponentially, especially the emergence of big data and unstructured data. This paper presents a great challenge to the spatial data management ability of relational or object-relational databases. With the arrival of Web2.0 era, in order to meet the demand of explosive growth of Internet application, non-relational database, a new data management technology, came into being. Non-relational databases have advantages in storing, querying and managing big data and unstructured data. This paper makes a comparative study of relational and non-relational spatial databases, and selects MongoDB ArcSDE Oracle and PostGIS as representatives to analyze the architecture, storage mechanism and operation mode of the database. By selecting qualitative and quantitative evaluation factors, the evaluation system is established, and relevant experiments are carried out. The characteristics of spatial data management in non-relational and relational data spatial databases are pointed out. The cooperative application scheme of non-relational and relational database is designed, and the key technologies are implemented based on the simple element model of OGC and object-oriented and component technology. The cooperative application scheme is applied to the seismic rescue data management system and the results are evaluated and analyzed. The main conclusions and results of this paper are as follows: 1. The quantitative and qualitative evaluation index system was established to compare MongoDBE ArcSDE and PostGIS. The results show that the storage time of MongoDB space vector data is less than that of ArcSDE and PostGIS under the same data size, but the rate of storing the same size raster data ArcSDE is the fastest. And the disk consumption is less: in spatial query, the query efficiency of MongoDB in the same data range is higher than that of the other two, the larger the scope, the more obvious the advantage. 2. According to the results of comparative analysis, this paper proposes a collaborative application scheme of MongoDB storage and management vector spatial data and spatial metadata storage and management raster data, and stores spatial data of non-relational database in collaboration. The key technologies of storing data in relational and non-relational spatial databases and using unified management are implemented. 3. According to the requirement of seismic rescue data management, the cooperative scheme of non-relational database and relational database is applied to the seismic rescue data management system. The system is designed and implemented by the cooperative application of MongoDB and ArcSDE. The results show that non-relational and relational databases can improve the storage and query efficiency of seismic rescue data and reduce the disk consumption of data storage. And make the update and expansion of the database more convenient. It can better meet the needs of earthquake rescue data management.
【學(xué)位授予單位】:首都師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:P208
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高建新;;GIS近期發(fā)展趨勢綜述[J];測繪科技情報(bào);2002年04期
2 周炎坤,李滿春;大型空間數(shù)據(jù)倉庫初探[J];測繪通報(bào);2000年08期
3 李莉莎;;關(guān)于NOSQL的思考[J];中國傳媒科技;2010年04期
4 李振華;ORACLE空間數(shù)據(jù)庫的對象-關(guān)系模式初探——兼議關(guān)系數(shù)據(jù)庫和面向?qū)ο髷?shù)據(jù)庫在GIS中的應(yīng)用[J];地球科學(xué);2002年03期
5 吳亮;楊凌云;尹艷斌;;基于插件技術(shù)的GIS應(yīng)用框架的研究與實(shí)現(xiàn)[J];地球科學(xué);2006年05期
6 黃賢立;;NoSQL非關(guān)系型數(shù)據(jù)庫的發(fā)展及應(yīng)用初探[J];福建電腦;2010年07期
7 崔修濤;吳健平;張偉鋒;;插件式GIS的開發(fā)[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
8 李平;吳國妹;;Oracle Spatial與ArcSDE空間數(shù)據(jù)上載及應(yīng)用比較[J];信息技術(shù);2007年05期
9 熊麗華,楊峰;基于ArcSDE的空間數(shù)據(jù)庫技術(shù)的應(yīng)用研究[J];計(jì)算機(jī)應(yīng)用;2004年03期
10 鐘永友;;基于ArcSDE的物流信息系統(tǒng)空間數(shù)據(jù)庫設(shè)計(jì)[J];計(jì)算機(jī)與數(shù)字工程;2010年01期
相關(guān)碩士學(xué)位論文 前6條
1 邵曉芳;基于Oracle的空間數(shù)據(jù)庫接口技術(shù)研究[D];中國人民解放軍國防科學(xué)技術(shù)大學(xué);2002年
2 銀迎;地理柵格數(shù)據(jù)的空間數(shù)據(jù)庫存儲管理研究與實(shí)現(xiàn)[D];中南大學(xué);2006年
3 胡儀員;基于ArcSDE for Oracle的地震災(zāi)害緊急救援隊(duì)數(shù)據(jù)庫系統(tǒng)建設(shè)[D];西南交通大學(xué);2008年
4 王洪濤;基于ArcSDE的空間數(shù)據(jù)庫技術(shù)研究[D];武漢理工大學(xué);2009年
5 劉長青;基于本體的地震多源數(shù)據(jù)協(xié)同檢索研究[D];首都師范大學(xué);2012年
6 沈姝;NoSQL數(shù)據(jù)庫技術(shù)及其應(yīng)用研究[D];南京信息工程大學(xué);2012年
,本文編號:1856463
本文鏈接:http://www.sikaile.net/kejilunwen/dizhicehuilunwen/1856463.html