天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 測(cè)繪論文 >

GPS星載鐘特性分析及短期預(yù)報(bào)算法研究

發(fā)布時(shí)間:2018-04-27 01:21

  本文選題:GPS + 原子鐘。 參考:《長(zhǎng)安大學(xué)》2017年碩士論文


【摘要】:在全球?qū)Ш较到y(tǒng)中,想要獲得精確的定位,那首先要實(shí)現(xiàn)精確的時(shí)間測(cè)定。也就是說(shuō),要建立高準(zhǔn)確度和高穩(wěn)定度的原子頻標(biāo)和時(shí)間系統(tǒng)成為了高精度導(dǎo)航定位的關(guān)鍵之處。原子鐘作為目前世界上最準(zhǔn)確的計(jì)時(shí)工具,同時(shí)也是衛(wèi)星導(dǎo)航系統(tǒng)有效載荷的核心部分,它的穩(wěn)定性性能直接決定了導(dǎo)航定位和時(shí)頻傳遞的精度的提高[8];本文首先對(duì)GPS鐘差序列進(jìn)行了長(zhǎng)期的特性分析,給出衛(wèi)星鐘的相位、頻率、頻漂以及穩(wěn)定度的計(jì)算模型。除此之外,由于鐘差預(yù)報(bào)是實(shí)現(xiàn)時(shí)間同步的重要基礎(chǔ),所以在研究中及實(shí)際中,很有必要建立高精度的衛(wèi)星鐘差預(yù)報(bào)模型,這從另一方面決定了衛(wèi)星導(dǎo)航定位的準(zhǔn)確度及精確度。由此,本文根據(jù)原子鐘時(shí)頻特性的相關(guān)理論和研究成果,詳細(xì)探究了星載原子鐘時(shí)頻特性,以及在衛(wèi)星鐘差預(yù)報(bào)模型中發(fā)現(xiàn)的若干值得探索的問(wèn)題[23]。本文主要研究?jī)?nèi)容和成果包括:(1)首先對(duì)于GPS在軌衛(wèi)星各類(lèi)原子鐘,有BLOCK IIR-M和BLOCK IIR,BLOCK IIA、BLOCK IIF,采用常用的二次多項(xiàng)式模型擬合得到衛(wèi)星鐘差模型,從而根據(jù)相關(guān)公式得到了GPS在軌衛(wèi)星鐘的相位、頻率、頻漂以及殘差序列,下一步依次計(jì)算了Cs鐘和Rb鐘的穩(wěn)定度指標(biāo),本文采用的是重疊哈達(dá)瑪方差,進(jìn)一步揭示了GPS在軌衛(wèi)星鐘的相位、頻率、頻漂及殘差指標(biāo)的變化規(guī)律;發(fā)現(xiàn)GPS BLOCK IIF型衛(wèi)星鐘穩(wěn)定度最高,其次是GPS BLOCK IIR-M和BLOCK IIR型Rb鐘[27],然后是GPS BLOCK IIA型Cs鐘。穩(wěn)定度最差的是GPS BLOCK IIA型Rb鐘。(2)在預(yù)報(bào)6小時(shí)的短期預(yù)報(bào)中,首先使用較少的已知數(shù)據(jù),本文采用了24個(gè)歷元建模,在預(yù)報(bào)精度方面,二次多項(xiàng)式模型預(yù)報(bào)效果比線(xiàn)性模型的預(yù)報(bào)精度和灰色系統(tǒng)模型的預(yù)報(bào)精度都要差一些;之后使用144個(gè)歷元作為已知數(shù)據(jù)建模,不難發(fā)現(xiàn)這三種預(yù)報(bào)模型的預(yù)報(bào)精度差別不大,任選其中一種方法均可[24]。從另一個(gè)角度,通過(guò)對(duì)比預(yù)報(bào)24小時(shí)的預(yù)報(bào)精度,可知預(yù)報(bào)誤差隨著預(yù)報(bào)時(shí)間的加長(zhǎng)而增大。綜上所述,灰色系統(tǒng)模型作為預(yù)報(bào)模型,它的很重要的一個(gè)優(yōu)點(diǎn)就是使用較少的已知數(shù)據(jù),而可以得到較高的預(yù)報(bào)精度。隨著預(yù)報(bào)時(shí)間的增長(zhǎng)或者預(yù)報(bào)歷元數(shù)的增加,灰色模型預(yù)報(bào)精度明顯比二次多項(xiàng)式方法的預(yù)報(bào)精度好得多,說(shuō)明二次多項(xiàng)式模型有一個(gè)明顯的缺點(diǎn)就是它的的誤差積累特性[13]。這些初步的、經(jīng)驗(yàn)型的結(jié)論對(duì)實(shí)時(shí)精密單點(diǎn)定位衛(wèi)星鐘差預(yù)報(bào)具有一定的參考價(jià)值和借鑒意義[14]。
[Abstract]:In a global navigation system, accurate time measurement is the first thing to achieve. That is to say, the establishment of high accuracy and high stability atomic frequency standard and time system has become the key point of high precision navigation and positioning. Atomic clock is the most accurate timing tool in the world, and it is also the core part of the payload of satellite navigation system. Its stability performance directly determines the accuracy of navigation positioning and time-frequency transmission [8]. In this paper, the long-term characteristics of the GPS clock difference sequence are analyzed, and the calculation models of the phase, frequency, frequency drift and stability of the satellite clock are given. In addition, because the clock difference prediction is an important basis for time synchronization, it is necessary to establish a high-precision satellite clock difference prediction model in the research and practice. This, on the other hand, determines the accuracy and accuracy of satellite navigation and positioning. Therefore, based on the relevant theories and research results of the time-frequency characteristics of atomic clocks, the time-frequency characteristics of space-borne atomic clocks are discussed in detail, as well as some problems worth exploring in the satellite clock difference prediction model [23]. The main contents and achievements of this paper include: (1) first of all, for various atomic clocks of GPS satellites in orbit, there are BLOCK IIR-M and BLOCK IIR BLOCK IIAA BLOCK IIFs. The satellite clock difference model is obtained by fitting the commonly used quadratic polynomial model. The phase, frequency, frequency drift and residual error sequence of GPS satellite clock in orbit are obtained according to the correlation formula. The stability indexes of Cs clock and RB clock are calculated in turn. The overlapping Hadamard variance is used in this paper. The changes of phase, frequency, frequency drift and residual error of GPS satellite clock in orbit are further revealed. It is found that the stability of GPS BLOCK IIF satellite clock is the highest, followed by GPS BLOCK IIR-M and BLOCK IIR RB clock [27], and then GPS BLOCK IIA Cs clock. The worst stability is the GPS BLOCK IIA RB clock. 2) in the short term prediction of 6 hours, less known data are first used. In this paper, 24 epoch models are used, and the prediction accuracy is obtained. The prediction accuracy of quadratic polynomial model is worse than that of linear model and grey system model. Either method is optional [24]. From another point of view, by comparing the prediction accuracy of 24 hours, we can see that the prediction error increases with the increase of forecast time. In conclusion, as a prediction model, grey system model has the advantage of using less known data and obtaining higher prediction accuracy. With the increase of forecasting time or the number of epochs, the prediction accuracy of grey model is much better than that of quadratic polynomial method. It shows that the quadratic polynomial model has an obvious disadvantage, which is its error accumulation property [13]. These preliminary and empirical conclusions have certain reference value and significance for the prediction of satellite clock difference in real time precise single point positioning [14].
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:P228.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王宇譜;呂志平;宮曉春;周海濤;王寧;;幾種衛(wèi)星鐘差預(yù)報(bào)模型預(yù)報(bào)效果的分析與比較[J];大地測(cè)量與地球動(dòng)力學(xué);2015年03期

2 李斌;楊富春;江峻毅;;星載原子鐘數(shù)據(jù)預(yù)處理的方法研究[J];宇航計(jì)測(cè)技術(shù);2015年01期

3 高為廣;藺玉亭;陳谷倉(cāng);孟軼男;;北斗系統(tǒng)在軌衛(wèi)星鐘性能評(píng)估方法及結(jié)論[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2014年04期

4 張清華;隋立芬;賈小林;;應(yīng)用Jones-Tryon Kalman濾波器對(duì)在軌GPS Rb鐘進(jìn)行狀態(tài)監(jiān)測(cè)[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2012年04期

5 毛悅;陳建鵬;戴偉;賈小林;;星載原子鐘穩(wěn)定性影響分析[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2011年10期

6 黃觀文;楊元喜;張勤;;開(kāi)窗分類(lèi)因子抗差自適應(yīng)序貫平差用于衛(wèi)星鐘差參數(shù)估計(jì)與預(yù)報(bào)[J];測(cè)繪學(xué)報(bào);2011年01期

7 張清華;隋立芬;牟忠凱;;基于小波與ARMA模型的衛(wèi)星鐘差預(yù)報(bào)方法[J];大地測(cè)量與地球動(dòng)力學(xué);2010年06期

8 張雙成;王利;黃觀文;;全球?qū)Ш叫l(wèi)星系統(tǒng)GNSS最新進(jìn)展及帶來(lái)的機(jī)遇和挑戰(zhàn)[J];工程勘察;2010年08期

9 張小紅;蔡詩(shī)響;李星星;郭斐;;利用GPS精密單點(diǎn)定位進(jìn)行時(shí)間傳遞精度分析[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2010年03期

10 楊元喜;;北斗衛(wèi)星導(dǎo)航系統(tǒng)的進(jìn)展、貢獻(xiàn)與挑戰(zhàn)[J];測(cè)繪學(xué)報(bào);2010年01期

相關(guān)博士學(xué)位論文 前1條

1 郭海榮;導(dǎo)航衛(wèi)星原子鐘時(shí)頻特性分析理論與方法研究[D];解放軍信息工程大學(xué);2006年

相關(guān)碩士學(xué)位論文 前6條

1 魏道坤;衛(wèi)星鐘差預(yù)報(bào)模型研究[D];長(zhǎng)安大學(xué);2014年

2 付文舉;GNSS在軌衛(wèi)星鐘特性分析及鐘差預(yù)報(bào)研究[D];長(zhǎng)安大學(xué);2014年

3 張杰;衛(wèi)星鐘性能分析及鐘差預(yù)報(bào)[D];西安電子科技大學(xué);2013年

4 方書(shū)山;GPS衛(wèi)星鐘差完備性監(jiān)測(cè)研究與算法實(shí)現(xiàn)[D];遼寧工程技術(shù)大學(xué);2011年

5 黃觀文;GPS精密單點(diǎn)定位和高精度GPS基線(xiàn)網(wǎng)平差研究及其軟件實(shí)現(xiàn)[D];長(zhǎng)安大學(xué);2009年

6 路曉峰;導(dǎo)航衛(wèi)星鐘差評(píng)估與預(yù)報(bào)研究[D];長(zhǎng)安大學(xué);2007年

,

本文編號(hào):1808550

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dizhicehuilunwen/1808550.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)a0cbf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com