天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 測繪論文 >

總體最小二乘平差方法及若干測繪應用研究

發(fā)布時間:2018-03-25 15:43

  本文選題:EIV模型 切入點:總體最小二乘 出處:《中國礦業(yè)大學》2017年碩士論文


【摘要】:本文以豐富總體最小二乘平差方法及拓展其應用為主線,以理論分析、仿真計算和實際應用為研究手段,以最小二乘理論、廣義逆理論、穩(wěn)健估計等理論為研究方法,圍繞總體最小二乘方法的函數模型與隨機模型中的若干問題,開展了相應的理論與應用研究工作。論文的主要研究內容和研究成果如下:(1)從函數模型與隨機模型兩方面系統地介紹現有的總體最小二乘平差方法,給出了各種具體的參數估計與精度評定公式,并指出各種方法的特點;介紹了用于處理觀測值具有序貫特征的遞歸總體最小二乘算法,并分析指出其在算法耗時方面相較于總體最小二乘方法具有的優(yōu)越性。(2)提出了隱式標度因子總體最小二乘平差方法。研究并指出了現有標度總體最小二乘的平差準則存在的問題,在此基礎上提出了附隱式標度因子的EIV模型,并導出相應的隱式標度因子總體最小二乘方法及其基本向量的協因數陣公式。仿真計算結果表明本文導出的隱式標度因子總體最小二乘法能夠有效解決現有標度總體最小二乘平差準則存在的問題。(3)提出了改進的混合總體最小二乘平差方法。研究復雜EIV模型的總體最小二乘平差問題。提出采用一般線性函數關系式對函數獨立、非函數獨立(零、重復、互為相反數等各種線性函數關系)的系數陣誤差元素進行數學統一描述,并導出了適用于混合EIV模型的改進混合總體最小二乘方法。仿真計算結果表明了該方法的正確有效性。(4)提出了多變量穩(wěn)健總體最小二乘平差方法。研究穩(wěn)健總體最小二乘平差問題。指出了現有穩(wěn)健總體最小二乘平差方法在處理EIV模型多類觀測信息時存在的問題,在此基礎上提出了多變量穩(wěn)健估計權函數,并導出了相應穩(wěn)健總體最小二乘估計的參數估計與精度評定公式。仿真計算結果驗證了本文的多變量穩(wěn)健總體最小二乘平差方法的正確有效性。(5)研究總體最小二乘方法在測繪領域的應用。結果表明總體最小二乘方法的實際應用效果視研究的問題而異。在香港地區(qū)的高程異常擬合中,其平差結果與經典最小二乘平差結果無明顯差別。在全球范圍的坐標基準框架準換、某地區(qū)的邊長變化反演地殼應變參數、遙感影像的葉面積指數反演模型中,其參數估計結果優(yōu)于經典最小二乘平差結果。在地球自轉參數預報模型中,其預報結果低于最小二乘法的預報結果。
[Abstract]:The main line of this paper is to enrich the total least square adjustment method and to expand its application, taking theoretical analysis, simulation calculation and practical application as the research means, and taking the least square theory, generalized inverse theory and robust estimation theory as the research methods. Some problems in the function model and stochastic model of the total least squares method are discussed. The main contents and results of this paper are as follows: 1) the existing methods of total least square adjustment are systematically introduced from two aspects: function model and stochastic model. The parameters estimation and precision evaluation formulas are given, and the characteristics of various methods are pointed out, and the recursive population least squares algorithm used to deal with the sequential characteristics of observed values is introduced. Compared with the total least squares method, this paper presents an implicit scaling factor total least square adjustment method and studies and points out the adjustment of the existing scale total least squares method, and points out the advantages of the algorithm in comparison with the total least squares method. (2) the implicit scaling factor of the total least squares adjustment method is proposed, and the adjustment of the existing scale population least squares method is studied and pointed out. Problems with the criteria, On this basis, the EIV model with implicit scaling factor is proposed. The corresponding implicit scaling factor total least squares method and the cofactor matrix formula of the basic vector are derived. The simulation results show that the implicit scale factor total least square method derived in this paper can effectively solve the existing scale. In this paper, an improved mixed population least square adjustment method is proposed. The problem of total least square adjustment for complex EIV model is studied. The general linear function relation is proposed to be independent of the function. The error elements of the coefficient matrix of non-functional independence (zero, repetition, reciprocal opposite number and other linear function relations) are described mathematically. An improved hybrid population least squares method suitable for mixed EIV model is derived. The simulation results show that the method is correct and effective. (4) A multivariable robust population least squares adjustment method is proposed, and robust population adjustment is studied. The problem of least square adjustment is pointed out. The problems existing in the existing robust global least squares adjustment methods in dealing with various kinds of observation information of EIV model are pointed out. On this basis, a multivariable robust estimation weight function is proposed. The parameter estimation and precision evaluation formula of the corresponding robust population least squares estimation are derived. The simulation results verify the validity of the multivariable robust population least squares adjustment method. The application of multiplicative method in surveying and mapping. The results show that the practical application effect of the total least squares method is different from that of the research. In the height anomaly fitting of Hong Kong area, There is no obvious difference between the adjustment results and the classical least square adjustment results. In the model of inversion of crustal strain parameters and leaf area index of remote sensing image, the global coordinate datum frame is changed correctly, the variation of side length of a certain area is used to invert crustal strain parameters, and the inversion model of leaf area index of remote sensing image is obtained. The result of parameter estimation is superior to that of classical least square adjustment, and in the prediction model of earth rotation parameter, the prediction result is lower than that of least square method.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P207.2

【參考文獻】

相關期刊論文 前10條

1 劉志平;李思達;張秋昭;;隱式標度因子的總體最小二乘估計方法[J];測繪科學技術學報;2016年05期

2 汪奇生;楊根新;;附不等式約束的總體最小二乘迭代算法[J];大地測量與地球動力學;2016年12期

3 Zhiping Liu;Sida Li;Hefang Bian;;An improved mixed total least squares method for strain inversion from distance changes[J];Geodesy and Geodynamics;2016年05期

4 劉志平;李思達;;復數域與實數域最小二乘平差的等價性研究[J];大地測量與地球動力學;2016年08期

5 曾文憲;方興;劉經南;姚宜斌;;通用EIV平差模型及其加權整體最小二乘估計[J];測繪學報;2016年08期

6 郭金運;徐曉飛;沈毅;;整體最小二乘算法及測量應用研究綜述[J];山東科技大學學報(自然科學版);2016年04期

7 鄧才華;周擁軍;朱建軍;;基于Rayleigh商的不等精度二次曲線擬合的WTLS迭代解法[J];大地測量與地球動力學;2016年05期

8 王樂洋;趙英文;陳曉勇;臧德彥;;多元總體最小二乘問題的牛頓解法[J];測繪學報;2016年04期

9 余岸竹;姜挺;郭文月;秦進春;江剛武;;總體最小二乘用于線陣衛(wèi)星遙感影像光束法平差解算[J];測繪學報;2016年04期

10 陸玨;;總體最小二乘法在相機標定中的應用[J];測繪工程;2016年03期

相關博士學位論文 前2條

1 魯鐵定;總體最小二乘平差理論及其在測繪數據處理中的應用[D];武漢大學;2010年

2 李爽;大地測量聯合反演的模式及算法研究[D];武漢大學;2005年

相關碩士學位論文 前4條

1 孫張振;高精度地球自轉參數預報的理論與算法研究[D];長安大學;2013年

2 張昊;地球定向參數極移的預報理論與方法研究[D];中南大學;2012年

3 杜春雨;基于TM影像的葉面積指數反演[D];東北林業(yè)大學;2010年

4 梅紅;基于穩(wěn)健估計的時序分析方法在變形監(jiān)測中的應用[D];河海大學;2005年



本文編號:1663779

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dizhicehuilunwen/1663779.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶7ebda***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com