地質(zhì)災(zāi)害實(shí)時(shí)監(jiān)測(cè)與信息管理集成系統(tǒng)關(guān)鍵技術(shù)研究
[Abstract]:China is one of the most serious geological disasters in the world, one of the most threatened countries, the complex geological conditions, the frequent construction activities, the collapse, the landslide, the debris flow, the ground collapse, the ground settlement, the ground fissure, etc., the disaster is more and more distributed, and the concealment, the sudden and the destructiveness are strong, And the prevention difficulty is large. The geological disaster has caused more than 1,000 people to die each year in China, and the direct economic loss is one billion yuan. The occurrence and change of the geological disaster needs to be accurately controlled through the monitoring; the effect of the geological disaster prevention and control project is also required to be detected by the monitoring; and the monitoring data of the geological disasters is also an important basis for the scientific research of the geological disasters. In the early period of this century, the climate change and the earthquake all tend to be active, and the landslide, the collapse, the debris flow and the ground crack caused by the strong rainfall and the earthquake will increase, and the future 5 to 10 years is still the high period of the geological disaster, so we need to take the way of real-time monitoring, With the advanced data acquisition technology, a reliable transmission network is used to provide more detailed data for prediction and more time for prevention. The occurrence of geological disasters has a certain formation condition, and the geological effect of the disaster needs to occur under certain power-induced (damage), and the induced power is natural, some are man-made, and different geological disasters are different in terms of formation conditions and harm. In this paper, the classification, development and distribution of geological disasters in China are analyzed, and the occurrence mechanism of typical sudden geological disasters such as collapse, landslide and debris flow is studied. The method of applying the intuitionistic trapezoidal fuzzy theory to the assessment of the risk of geological hazard is also discussed. Monitoring the equipment used is of great importance to the development of the monitoring technology method, and the monitoring technology method is classified into direct information class, indirect information class and inducing factor class. This paper studies the common monitoring methods and equipment, including surface displacement monitoring, underground deformation monitoring, hydrographic monitoring, data acquisition and alarm equipment, etc., analyzes the error source of the digital camera in the photogrammetry, and sets up the calibration model according to the calibration data extraction and calibration model. In the step of parameter calculation and optimization and distortion correction, a precise calibration method is established, and the pixel quantization noise error, the image coordinate axis orthogonal error, the correction center error, the lens radial distortion error and the tangential distortion error are corrected successively, and the experimental results show that, This method can result in a very accurate calibration result. The monitored data transmission includes short-range transmission in the area, transmission of the remote network, and verification, compression, encryption, and the like of the data of the transmission process. In this paper, based on the characteristics of the wireless sensor network, a quantum-immune-based energy-cavity avoidance algorithm is proposed, which combines the natural parallelism of the quantum computation and the full adaptability of the immune algorithm. It has better population diversity and faster convergence rate than the traditional evolutionary algorithm. The results show that the algorithm can effectively improve the efficiency of the network compared with the existing algorithm. The remote communication technologies used in the monitoring are studied, including GPRS, LTE, satellite digital communication and so on. The common data compression method and check method are introduced, and the data compression method suitable for monitoring is put forward. The common data encryption method is studied, and a new method of image encryption is established based on the Lorenz hybrid mapping and the finite field theory. The method comprises the following steps of: firstly, dividing the original image information into an image matrix by a Lorenz hybrid mapping mapping, and then processing the image matrix in a finite field, The new encryption method has better effect and faster speed and realizes the balance of speed and effect through the combination of the hybrid mapping and the calculation in the finite field. The current monitoring software has the problems of low maintainability, poor data display effect and the like. This paper discusses the importance of the maintainability of the software in the development of the real-time monitoring and information management integrated system of geological disasters, and studies the software development technologies such as three-layer architecture, Silverlight, MVVM mode and so on. So that the user of the software can continuously improve and update the existing software system to a certain extent. then the overall design of the system is carried out on the basis of real-time acquisition, uploading and processing of monitoring data such as surface displacement, deep displacement, crack displacement, rainfall, water level, pore water pressure (seepage pressure), stress, earth pressure and the like, Data presentation of the client is achieved using the Silverlight technology and the MVVM mode. The real-time monitoring and information management integrated system of geological hazards has been applied to three monitoring project points, such as the monitoring demonstration point of the area monitoring and demonstration site of the saddle and sub-dam of the Wangjiang Road of Wanzhou District, the landslide monitoring demonstration point of the CPPCC office building of the New District of the South, and the dangerous rock monitoring demonstration point of the 7 # building in the four-year-four of the Wanzhou District. The text first introduces the basic situation, the cause mechanism and the deformation trend of each monitoring point, the monitoring content and the layout of the monitoring points, and then analyzes the data monitored by the system. The results show that the system can better reflect the real-time value of various monitoring parameters and its continuous trend, and provide the basis for disaster prevention and reduction and prediction.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P694
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈艷杰;安徽省地質(zhì)災(zāi)害分類及統(tǒng)計(jì)分析[J];地質(zhì)科技情報(bào);2000年02期
2 黃春鵬,劉志遜,蘇茂凱;福建省地質(zhì)災(zāi)害的現(xiàn)狀及防治對(duì)策[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2000年01期
3 ;《地質(zhì)災(zāi)害勘查指南》出版[J];工程勘察;2001年02期
4 呂義清,李智蘭;宣巖溝地質(zhì)災(zāi)害分析[J];水土保持學(xué)報(bào);2001年S1期
5 ;地質(zhì)災(zāi)害可防治[J];巖石力學(xué)與工程學(xué)報(bào);2001年06期
6 郭躍,林孝松;地質(zhì)災(zāi)害系統(tǒng)的復(fù)雜性分析[J];重慶師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2001年04期
7 ;《地質(zhì)災(zāi)害與環(huán)境保護(hù)》2001年第12卷第1~4期(總第38~41期)總目次[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2001年04期
8 劉國(guó)治;安溪縣地質(zhì)災(zāi)害形成原因及防治對(duì)策[J];福建地質(zhì);2001年01期
9 盧耀如;巖溶地區(qū)合理開(kāi)發(fā)資源與防治地質(zhì)災(zāi)害[J];水文地質(zhì)工程地質(zhì);2001年05期
10 呂義清,段妙珍;南村地質(zhì)災(zāi)害分析[J];太原理工大學(xué)學(xué)報(bào);2001年04期
相關(guān)會(huì)議論文 前10條
1 楊順泉;;湖南的滑坡、崩塌地質(zhì)災(zāi)害及其防治意見(jiàn)[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
2 張業(yè)成;張春山;張梁;;中國(guó)地質(zhì)災(zāi)害系統(tǒng)層次分析與綜合災(zāi)度計(jì)算[A];中國(guó)地質(zhì)科學(xué)院文集(27-28)[C];1993年
3 盧耀如;;巖溶地區(qū)合理開(kāi)發(fā)資源與防治地質(zhì)災(zāi)害[A];喀斯特與環(huán)境地學(xué)——盧耀如院士80華誕祝壽論文選集[C];2011年
4 盧耀如;;積極防治地質(zhì)災(zāi)害 與自然和諧共處[A];喀斯特與環(huán)境地學(xué)——盧耀如院士80華誕祝壽論文選集[C];2011年
5 徐衛(wèi)亞;孫廣忠;許兵;;論地質(zhì)災(zāi)害學(xué)研究[A];第四屆全國(guó)工程地質(zhì)大會(huì)論文選集(一)[C];1992年
6 劉傳正;胡海濤;;地質(zhì)災(zāi)害系統(tǒng)的初步探討[A];第四屆全國(guó)工程地質(zhì)大會(huì)論文選集(一)[C];1992年
7 徐衛(wèi)亞;;地質(zhì)災(zāi)害分類體系[A];第二屆全國(guó)工程地質(zhì)力學(xué)青年學(xué)術(shù)討論會(huì)論文集[C];1992年
8 蔡立梅;周永章;石丙飛;竇磊;付偉;付善明;;地質(zhì)災(zāi)害對(duì)廣州城市建設(shè)發(fā)展的影響[A];中國(guó)地質(zhì)學(xué)會(huì)工程地質(zhì)專業(yè)委員會(huì)2006年學(xué)術(shù)年會(huì)暨“城市地質(zhì)環(huán)境與工程”學(xué)術(shù)研討會(huì)論文集[C];2006年
9 孟凡森;洪益青;;開(kāi)灤林西區(qū)域地質(zhì)災(zāi)害變形監(jiān)測(cè)與治理[A];2011全國(guó)礦山測(cè)量新技術(shù)學(xué)術(shù)會(huì)議論文集[C];2011年
10 施偉忠;;湖北省2003年地質(zhì)災(zāi)害回顧及2004年主要地質(zhì)災(zāi)害趨勢(shì)預(yù)測(cè)[A];自然災(zāi)害綜合趨勢(shì)分析研究——2004年湖北省主要自然災(zāi)害綜合趨勢(shì)分析會(huì)商文集[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 王大銳;重新認(rèn)識(shí)地質(zhì)災(zāi)害[N];中國(guó)教育報(bào);2004年
2 通訊員 劉悅 葉久德;西昌電業(yè)局戰(zhàn)地質(zhì)災(zāi)害保線路平安[N];中國(guó)電力報(bào);2006年
3 宋為偉;云南楚雄多次成功避讓地質(zhì)災(zāi)害[N];中國(guó)礦業(yè)報(bào);2007年
4 記者 鄭娜 實(shí)習(xí)生 陳寧;山西斥資11.9億整治農(nóng)村地質(zhì)災(zāi)害[N];發(fā)展導(dǎo)報(bào);2007年
5 張健;我省預(yù)防地質(zhì)災(zāi)害知識(shí)培訓(xùn)惠及百萬(wàn)群眾[N];貴州日?qǐng)?bào);2007年
6 易博文邋通訊員 賀正;汛期地質(zhì)災(zāi)害防災(zāi)工作全面展開(kāi)[N];湖南日?qǐng)?bào);2007年
7 ;樂(lè)山市突發(fā)地質(zhì)災(zāi)害應(yīng)急預(yù)案[N];樂(lè)山日?qǐng)?bào);2007年
8 劉海;地質(zhì)災(zāi)害涉險(xiǎn)戶住上了“放心房”[N];南充日?qǐng)?bào);2007年
9 梁建東;我省將斥巨資治理地質(zhì)災(zāi)害嚴(yán)重村[N];山西政協(xié)報(bào);2007年
10 本報(bào)記者 張樹(shù)彬;我市將投入1億元治理農(nóng)村地質(zhì)災(zāi)害[N];忻州日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 魯?shù)篮?汶川震區(qū)地質(zhì)災(zāi)害輸沙規(guī)律與山區(qū)河流演化趨勢(shì)研究[D];成都理工大學(xué);2015年
2 劉宇;地質(zhì)災(zāi)害實(shí)時(shí)監(jiān)測(cè)與信息管理集成系統(tǒng)關(guān)鍵技術(shù)研究[D];重慶大學(xué);2015年
3 付建飛;遼寧省地質(zhì)災(zāi)害的潛在性分布研究[D];東北大學(xué);2007年
4 張春山;黃河上游地區(qū)地質(zhì)災(zāi)害形成條件與風(fēng)險(xiǎn)評(píng)價(jià)研究[D];中國(guó)地質(zhì)科學(xué)院;2003年
5 汪宙峰;地質(zhì)災(zāi)害空間信息共享平臺(tái)關(guān)鍵技術(shù)研究及應(yīng)用[D];成都理工大學(xué);2011年
6 丁峰;山西省平朔地區(qū)地質(zhì)災(zāi)害成災(zāi)機(jī)制與風(fēng)險(xiǎn)評(píng)估[D];中國(guó)礦業(yè)大學(xué)(北京);2012年
7 馬文瀚;湖南省地質(zhì)災(zāi)害孕災(zāi)機(jī)理及綜合防治研究[D];中南大學(xué);2012年
8 張以晨;吉林省地質(zhì)災(zāi)害調(diào)查與區(qū)劃綜合研究及預(yù)報(bào)預(yù)警系統(tǒng)建設(shè)[D];吉林大學(xué);2012年
9 張文江;地質(zhì)災(zāi)害數(shù)據(jù)集成關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2013年
10 馬常春;青島地區(qū)汛期突發(fā)性地質(zhì)災(zāi)害現(xiàn)狀、機(jī)理及預(yù)報(bào)預(yù)警[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 林梅惠;地質(zhì)災(zāi)害綜合信息管理系統(tǒng)的實(shí)現(xiàn)與應(yīng)用[D];福建師范大學(xué);2010年
2 陳芳芳;風(fēng)險(xiǎn)社會(huì)視野中的地質(zhì)災(zāi)害及其治理研究[D];蘭州大學(xué);2012年
3 章鵬;縣級(jí)地質(zhì)災(zāi)害管理系統(tǒng)研究[D];浙江大學(xué);2013年
4 張穎;滇西盆嶺交錯(cuò)區(qū)公路地質(zhì)災(zāi)害發(fā)育特征與治理對(duì)策研究[D];昆明理工大學(xué);2015年
5 楊t,
本文編號(hào):2437287
本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/2437287.html