低滲透巖石的應(yīng)力敏感性與孔隙結(jié)構(gòu)三維重構(gòu)研究
本文選題:低滲透巖石 + 滲透率應(yīng)力敏感性; 參考:《中國礦業(yè)大學(xué)(北京)》2016年博士論文
【摘要】:低滲透巖石的物理力學(xué)性質(zhì)是地下工程及基礎(chǔ)設(shè)施建設(shè)、煤炭與油氣資源開采、水力水電開發(fā)、核廢料處置及能源儲(chǔ)備、CO2地質(zhì)封存等領(lǐng)域的研究熱點(diǎn)。深入認(rèn)識(shí)和理解低滲透巖石的物理力學(xué)性質(zhì)是解決上述工程領(lǐng)域?qū)嶋H問題的核心與保障。這些工程的建設(shè)與實(shí)施過程中,由于開挖擾動(dòng)或者實(shí)際工況影響,低滲透巖石所處的應(yīng)力環(huán)境不斷變化。低滲透巖石的物理力學(xué)響應(yīng)隨開采應(yīng)力變化而不斷演化。例如,地下硐室開挖導(dǎo)致原巖應(yīng)力釋放,在采動(dòng)應(yīng)力和初始地應(yīng)力的共同作用下巖石中的微裂紋發(fā)育,導(dǎo)致圍巖的物理力學(xué)性質(zhì),特別是滲透率隨采動(dòng)過程不斷變化;深部煤與瓦斯共采時(shí),需要考慮開采引起的煤層滲透率的變化規(guī)律,以便實(shí)施有效的抽采工藝;核廢物處置工程中,需要考慮核廢物衰變釋放的熱量導(dǎo)致的周圍巖層物理力學(xué)性質(zhì)的改變;低滲油氣藏開采時(shí),測(cè)量巖石樣品的滲透率需要恢復(fù)樣品所在地層的原始應(yīng)力狀態(tài)才能獲得較準(zhǔn)確的儲(chǔ)層滲透率表征;CO2地質(zhì)封存中,研究蓋層密封性時(shí)需要考慮CO2上浮帶來的蓋層有效應(yīng)力的變化對(duì)蓋層巖石滲透率等物理力學(xué)性質(zhì)的影響。因此,深入研究低滲透巖石物理力學(xué)性質(zhì)隨地層應(yīng)力狀態(tài)改變而變化的規(guī)律對(duì)于確定合理的工程建設(shè)設(shè)計(jì)與實(shí)施方案具有重要意義。定量研究和表征低滲透巖石滲透性質(zhì)隨應(yīng)力的變化特征及演化規(guī)律是本文研究的重點(diǎn)。研究發(fā)現(xiàn)低滲巖石滲透率隨有效應(yīng)力的變化規(guī)律與常規(guī)巖石表現(xiàn)出了很大的不同。在較小的有效應(yīng)力范圍內(nèi),隨著有效應(yīng)力的增長,低滲透巖石表現(xiàn)出孔隙率變化不大但滲透率大幅下降的現(xiàn)象。滲透率甚至?xí)陆祹讉(gè)數(shù)量級(jí),國內(nèi)學(xué)者將此現(xiàn)象稱之為滲透率的壓敏效應(yīng)。為了描述與揭示低滲巖石壓敏效應(yīng),國內(nèi)外學(xué)者在宏觀實(shí)驗(yàn)數(shù)據(jù)擬合以及在微觀模型基礎(chǔ)上開展數(shù)值分析兩方面分別開展了相關(guān)研究,取得了不少進(jìn)展。本文的研究在系統(tǒng)地收集了低滲巖石孔隙率和滲透率隨有效應(yīng)力變化的實(shí)驗(yàn)測(cè)量數(shù)據(jù),并分析了當(dāng)前學(xué)者用于描述低滲巖石孔隙率有效應(yīng)力關(guān)系式和滲透率有效應(yīng)力關(guān)系式后發(fā)現(xiàn):這些關(guān)系式并不能準(zhǔn)確描述整個(gè)應(yīng)力范圍內(nèi)低滲巖石的孔隙率和滲透率的測(cè)量數(shù)據(jù)。并且這些關(guān)系式多半來自經(jīng)驗(yàn)擬合,并不能準(zhǔn)確反映巖石這些外在表象的內(nèi)在物理規(guī)律,無法合理與準(zhǔn)確地描述低滲透巖石的壓敏效應(yīng)。微觀方面由于巖石內(nèi)部孔隙、裂隙、節(jié)理等不連續(xù)結(jié)構(gòu)的復(fù)雜性,大部分研究對(duì)這些不連續(xù)結(jié)構(gòu)進(jìn)行了過分簡(jiǎn)化。同時(shí)當(dāng)前微觀巖石模型難以準(zhǔn)確表征受力后巖石內(nèi)部不連續(xù)結(jié)構(gòu)的變化。并且當(dāng)前計(jì)算流體方法在處理巖石內(nèi)部孔隙結(jié)構(gòu)復(fù)雜邊界條件時(shí)會(huì)遇到極大困難,使得模擬難以進(jìn)行。本文針對(duì)上述問題,嘗試從宏觀和微觀兩個(gè)層面的研究出發(fā),準(zhǔn)確描述與定量表征低滲巖石滲透率和有效應(yīng)力的關(guān)系,同時(shí)嘗試結(jié)合宏觀和微觀分析得到的結(jié)論,對(duì)低滲巖石壓敏效應(yīng)外在表現(xiàn)的內(nèi)在機(jī)理加以解釋。在宏觀方面,本文從實(shí)驗(yàn)測(cè)量數(shù)據(jù)出發(fā),借助巖石“兩部分胡克定律模型”,即two-parthooke’smodel(tphm)建立起了更符合實(shí)際物理規(guī)律的宏觀理論關(guān)系式。tphm概念性地將巖石劃分為“軟”、“硬”兩部分,并采用不同形式的胡克定律來描述軟、硬兩部分大不相同的變形規(guī)律。顧名思義,軟的部分受力后產(chǎn)生相對(duì)自身尺寸來說較大的變形,采用自然應(yīng)變關(guān)系來更準(zhǔn)確描述;硬的部分變形規(guī)律描述與傳統(tǒng)巖石小變形理論相似,采用工程應(yīng)變關(guān)系近似描述。軟硬兩部分應(yīng)力應(yīng)變關(guān)系不同,導(dǎo)致它們對(duì)巖石孔隙率和滲透率的貢獻(xiàn)大不相同。軟硬兩部分聯(lián)合構(gòu)成了巖石整體,采用這樣的劃分可以更準(zhǔn)確地描述低滲巖石在應(yīng)力作用下的滲透率變化規(guī)律。我們采用冪函數(shù)方程擬合了軟的部分的孔隙率和滲透率的關(guān)系。擬合結(jié)果顯示軟的部分孔隙率和滲透率大致符合“立方定律”,這說明低滲巖石的滲透率壓敏效應(yīng)是由于巖石內(nèi)部微裂紋閉合所導(dǎo)致的。本文建立起的宏觀關(guān)系式具有如下優(yōu)點(diǎn):(1)宏觀概念模型的建立考慮了巖石的非均質(zhì)性。這為得到更合理的物理描述關(guān)系式打下了堅(jiān)實(shí)的基礎(chǔ);(2)此宏觀模型可以更準(zhǔn)確地反映巖石在整個(gè)應(yīng)力測(cè)試范圍內(nèi)物理力學(xué)性質(zhì)的變化,尤其是可以表征巖石在較低有效應(yīng)力范圍內(nèi)的非線性變化,例如較低有效應(yīng)力范圍內(nèi)孔隙率的非線性降低和滲透率的大幅下降;(3)模型采用孔隙率作為中間橋梁,分析了低滲巖石受力后,由于不連續(xù)結(jié)構(gòu)非均勻壓縮變形導(dǎo)致的滲透率變化。相比直接分析滲透率隨有效應(yīng)力變化,更符合物理認(rèn)知;(4)宏觀模型關(guān)系式中各個(gè)參數(shù)具有明確的物理意義,而不是為了達(dá)到描述實(shí)驗(yàn)數(shù)據(jù)而進(jìn)行的公式擬合;(5)此宏觀模型可以給出符合物理定律的低滲巖石壓敏效應(yīng)描述與解釋。在tphm理論框架下推導(dǎo)得到的一系列巖石孔隙率和滲透率隨有效應(yīng)力變化的關(guān)系式,可以更準(zhǔn)確與合理地反映低滲巖石受力變化時(shí)的物理力學(xué)性質(zhì),同時(shí)可以對(duì)低滲巖石壓敏效應(yīng)加以合理解釋。此外,我們應(yīng)用宏觀理論推導(dǎo)得到的關(guān)系式分析了頁巖氣開采產(chǎn)量遞減曲線。作為tphm的一個(gè)應(yīng)用,我們將頁巖滲透率隨有效應(yīng)力變化的tphm關(guān)系式融合到了數(shù)值模擬軟件中,采用comsol分析了頁巖氣產(chǎn)量遞減曲線。通過模擬發(fā)現(xiàn),對(duì)儲(chǔ)層的合理改造是頁巖氣產(chǎn)量化開采的前提;儲(chǔ)層氣體壓力的降低是頁巖氣產(chǎn)量下降的主要因素;儲(chǔ)層巖石滲透率隨有效應(yīng)力的改變對(duì)頁巖氣產(chǎn)量遞減曲線有著較大的影響?紤]儲(chǔ)層巖石滲透率應(yīng)力相關(guān)性的模型表現(xiàn)出了更迅速的產(chǎn)出速率遞減,同時(shí)表現(xiàn)出了更長的生產(chǎn)年限。在微觀方面,我們從巖石的孔隙結(jié)構(gòu)特征出發(fā),建立了可以準(zhǔn)確表征巖石內(nèi)部孔隙結(jié)構(gòu)的數(shù)字巖心模型,并在此數(shù)字模型的基礎(chǔ)上分析了巖石的滲透性質(zhì)。首先,巖石滲透性質(zhì)與巖石孔隙結(jié)構(gòu)密切相關(guān),準(zhǔn)確和定量地表征孔隙結(jié)構(gòu)十分重要。本研究中,我們通過ct掃描實(shí)驗(yàn)和計(jì)算機(jī)重構(gòu)技術(shù)獲得了巖石微觀孔隙結(jié)構(gòu)。作為CT掃描實(shí)驗(yàn)獲得巖石孔隙結(jié)構(gòu)的補(bǔ)充,重構(gòu)方法在當(dāng)前昂貴與耗時(shí)實(shí)驗(yàn)條件的限制下顯得不可或缺。本文介紹了基于傳統(tǒng)模擬退火算法改進(jìn)得到的高效巖石孔隙結(jié)構(gòu)模型重構(gòu)算法。通過在重構(gòu)過程中加入模擬巖石成巖的過程,改進(jìn)了模型重構(gòu)初期的執(zhí)行效率和算法有效性;在重構(gòu)算法中引入分形幾何方法,更好地描述了孔隙結(jié)構(gòu)復(fù)雜的幾何形態(tài);同時(shí)采用了新的系統(tǒng)迭代更新方式,提高了算法后期的執(zhí)行效率。通過與CT掃描實(shí)驗(yàn)得到的參考模型相對(duì)比表明:重構(gòu)模型與參考模型有較好的幾何相似性,基本一致的幾何統(tǒng)計(jì)特征,相似的小島分形維數(shù),相似的拓?fù)鋮?shù)以及基本一致的單軸壓縮力學(xué)響應(yīng)。這些對(duì)比表明了重構(gòu)算法的有效性。其次,由于當(dāng)前實(shí)驗(yàn)條件的限制,難以通過實(shí)驗(yàn)直接獲得低滲巖石內(nèi)部不連續(xù)結(jié)構(gòu)隨應(yīng)力變化的準(zhǔn)確描述。因此利用巖石數(shù)字巖心模型開展相關(guān)研究,是完成這一任務(wù)必要和有效的方法。在微觀模型的建立過程中,我們?nèi)诤狭撕暧^分析所得到的低滲巖石中微裂紋隨有效應(yīng)力增大而閉合的結(jié)論。在孔隙結(jié)構(gòu)模型的基礎(chǔ)上建立了巖石三維孔隙—微裂紋模型。通過在巖石三維孔隙結(jié)構(gòu)模型的基礎(chǔ)上增加隨機(jī)構(gòu)造的微裂紋,形成孔隙—微裂紋模型。分析中采用孔隙—微裂紋模型代表較低有效應(yīng)力范圍內(nèi)低滲巖石內(nèi)部的微觀結(jié)構(gòu),采用孔隙模型代表較高有效應(yīng)力范圍內(nèi)巖石內(nèi)部的微觀結(jié)構(gòu)。這兩組模型的建立,可以用來對(duì)比分析微觀結(jié)構(gòu)演化對(duì)巖石滲透率的影響。再次,我們采用格子玻爾茲曼方法,即Lattice Boltzmann Method(LBM),對(duì)比分析了兩組模型內(nèi)部流體的速度場(chǎng)分布,并換算得到了兩個(gè)模型的滲透率。LBM可以直接利用具有復(fù)雜非連續(xù)結(jié)構(gòu)的數(shù)字巖心模型進(jìn)行滲透性質(zhì)分析,相比傳統(tǒng)計(jì)算流體力學(xué)方法難以考慮復(fù)雜邊界具有天然的優(yōu)勢(shì)。通過對(duì)比計(jì)算發(fā)現(xiàn),微裂紋的存在,大大增加了模型內(nèi)部的有效流動(dòng)通道。雖然微裂紋所占的孔隙體積比很小,但作為關(guān)鍵的流動(dòng)通道,它們的存在大大提高了巖石的滲透性。在微觀尺度上建立巖石內(nèi)部孔隙及微裂紋結(jié)構(gòu),考慮由于應(yīng)力改變導(dǎo)致孔隙結(jié)構(gòu)的變化,并借助LBM方法研究結(jié)構(gòu)內(nèi)部流體的流動(dòng)性質(zhì),可以直觀定量地分析微觀孔隙結(jié)構(gòu)和巖石滲透性質(zhì)之間的關(guān)系。通過LBM流動(dòng)模擬,我們直觀地展示了微裂紋對(duì)巖石滲透性質(zhì)的巨大影響?偟膩碚f,在巖石微觀數(shù)字模型基礎(chǔ)上開展的分析,可以幫助我們更深入地理解與認(rèn)識(shí)巖石宏觀物理力學(xué)性質(zhì)外在表現(xiàn)背后的內(nèi)在機(jī)理。本文從宏觀和微觀兩個(gè)層面著手,詳細(xì)地分析了低滲巖石滲透率的應(yīng)力敏感性。在宏觀描述方面,借助TPHM模型,建立了低滲巖石孔隙率、滲透率隨有效應(yīng)力變化的規(guī)律。在微觀方面,建立了孔隙—微裂紋模型,借助LBM方法模擬了模型內(nèi)部流體的流動(dòng)規(guī)律,直觀展示了微裂紋對(duì)模型滲透率的巨大貢獻(xiàn)。分析表明低滲巖石內(nèi)部的微裂紋在應(yīng)力作用下產(chǎn)生相對(duì)自身來說較大的變形,這是低滲巖石滲透率應(yīng)力敏感性外在表現(xiàn)的內(nèi)在原因。
[Abstract]:The physical and mechanical properties of low permeability rocks are the hot spots in the fields of underground engineering and infrastructure construction, coal and oil and gas resources exploitation, hydraulic and hydropower development, nuclear waste disposal and energy reserve, and CO2 geological sequestration. Understanding and understanding the physical and mechanical properties of low permeability rocks is the core of solving the practical problems in the engineering field. In the course of construction and implementation of these projects, the stress environment of low permeability rocks is constantly changing because of the influence of excavation disturbance or actual conditions. The physical and mechanical response of low permeability rocks evolves with the change of mining stress. For example, the excavation of underground chamber leads to the release of Yuan Yan stress, in the mining stress and the initial ground stress. The development of micro cracks in the rock under the joint action leads to the physical and mechanical properties of the surrounding rock, especially the change of permeability with the mining process. When the coal and gas are combined in the deep coal mining, the change law of the permeability of the coal seam caused by the mining should be considered so as to implement the effective extraction process. The physical and mechanical properties of the surrounding rock caused by the heat release are changed; when the low permeability oil and gas reservoirs are exploited, the permeability of the rock samples should be measured in order to obtain a more accurate reservoir permeability characterization. In the CO2 geological seal, the cover seal of the cover should be considered to be effective in the cover layer of the CO2 floatation. The influence of stress changes on the physical and mechanical properties of the rock permeability, so it is of great significance to study the change of the physical and mechanical properties of the low permeability rock with the change of the stress state of the ground. It is of great significance to determine the reasonable design and implementation of the engineering construction. It is found that the variation of permeability of low permeability rock with effective stress is very different from that of conventional rock. In the small effective stress range, with the increase of effective stress, the porosity of low permeability rock shows a little change in porosity and a large decrease in permeability. In order to describe and reveal the pressure sensitive effect of low permeability rocks, scholars at home and abroad have carried out a lot of research on two aspects of macro experimental data fitting and numerical analysis on the basis of microscopic models. In this paper, the experimental data of porosity and permeability variation of low permeability rocks are collected systematically, and the results of current scholars' use of effective stress relation of porosity and effective stress relation of permeability are analyzed. These correlations do not accurately describe the low permeability rock in the whole stress range. The measurement data of porosity and permeability of stone, and these correlations are mostly derived from empirical fitting, and can not accurately reflect the internal physical laws of these external representations of rock, and can not describe the pressure sensitivity effect of low permeability rocks reasonably and accurately. Most of these studies simplify these discontinuous structures. At the same time, the current micro rock model is difficult to accurately characterize the changes in the discontinuous structure of the rock interior. And the current computational fluid method will encounter great difficulties when dealing with complex boundary conditions of the inner pore structure of the rock, which makes it difficult to simulate. From the two aspects of macroscopic and microscopic studies, we try to describe and quantitatively describe the relationship between permeability and effective stress of low permeability rocks. At the same time, we try to explain the internal mechanism of the external performance of low permeability rock pressure sensitivity effect combined with the conclusions obtained by macro and micro analysis. According to the data, the rock "two part Hooke's law model", that is, two-parthooke 'Smodel (tphm), set up a macroscopic theoretical relation type which is more in line with the actual physical law,.Tphm conceptually divides the rock into "soft", "hard" two parts, and uses different forms of law to describe the large and different deformation of the soft and hard two parts. Law. As the name suggests, the soft part produces larger deformation relative to its own size after the force, which is more accurately described by the natural strain relation; the hard part deformation law is similar to the traditional rock small deformation theory, and is approximately described by the engineering strain relation. The relationship between the two parts of the soft and hard strain and the strain and strain is different, which leads to the rock holes. The contribution of the gap rate to the permeability is different. The two parts of the soft and hard joint constitute the rock whole. By this division, the permeability change law of the low permeability rock can be more accurately described. We use the power function equation to fit the relationship between the porosity and the permeability of the soft part. The fitting results show the soft part hole. The clearance rate and permeability are roughly conformed to the "cubic law", which indicates that the pressure sensitivity effect of low permeability rocks is caused by the closure of micro cracks within the rock. The macroscopic relation formula established in this paper has the following advantages: (1) the establishment of the macroscopic conceptual model takes into account the heterogeneity of the rock. This is a more reasonable physical description relationship. The formula has laid a solid foundation; (2) this macro model can more accurately reflect the changes in the physical and mechanical properties of the rock in the range of the whole stress test, especially the nonlinear changes that can characterize the rock in the lower effective stress range, such as the nonlinear reduction of porosity in the lower effective stress range and the significant decrease in permeability. 3) the model adopts the porosity as the intermediate bridge, and analyzes the permeability change caused by the inhomogeneous compression deformation of the discontinuous structure after the stress of the low permeability rock. Compared with the direct analysis of the permeability with the effective stress change, it is more consistent with the physical cognition. (4) each parameter in the macroscopic model relation has a clear physical meaning, not for the purpose of achieving it. The formula fitting for the experimental data is described. (5) this macro model can give the description and interpretation of low permeability rock pressure sensitivity effect in accordance with the law of physics. A series of rock porosity and permeability derived in the tphm theory framework can be more accurately and reasonably reflected in the stress variation of low permeability rocks. At the same time, the pressure sensitive effect of low permeability rock can be explained reasonably. In addition, we analyze the production decline curve of shale gas production by using the relational formula derived from macro theory. As an application of tphm, we fuse the shale permeability with the tphm relation of effective stress change to the numerical simulation software. The production decline curve of shale gas is analyzed by COMSOL. Through the simulation, it is found that the rational transformation of the reservoir is the precondition for shale gas production. The reduction of reservoir gas pressure is the main factor of the decline of shale gas production, and the permeability of reservoir rock has a great influence on the decline curve of shale gas production with the change of effective stress. The model considering reservoir rock permeability stress correlation shows a more rapid decline in output rate and longer production years. On the microcosmic aspect, we set up a digital core model which can accurately characterize the pore structure of rock, based on the pore structure characteristics of rock, and based on this digital model. The permeability properties of rock are analyzed. First, the permeability of rock is closely related to the pore structure of rock. It is very important to accurately and quantitatively characterize the pore structure. In this study, we obtained the micro pore structure of rock through the CT scanning experiment and the computer reconstruction technique. As a supplement to the pore structure of the rock as a CT scanning experiment, the reconfiguration side of the rock is obtained. The method is indispensable under the restriction of expensive and time-consuming experimental conditions. This paper introduces the reconstruction algorithm of high efficient rock pore structure model based on the improvement of the traditional simulated annealing algorithm. By adding the rock formation process during the reconstruction process, the efficiency and effectiveness of the model reconfiguration are improved; The fractal geometry method is introduced to describe the geometric shape of the complex pore structure, and the new method of updating the system is adopted to improve the efficiency of the later period of the algorithm. The comparison of the reference model obtained from the CT scanning experiment shows that the reconstruction model has a better geometric similarity and is basically the same as the reference model. The geometric statistical features, similar fractal dimensions of small islands, similar topological parameters and the basic uniform uniaxial compression mechanical response. These comparisons show the effectiveness of the reconstruction algorithm. Secondly, it is difficult to obtain the exact description of the internal discontinuous structure of low permeability rock with the stress change due to the restriction of the current experimental conditions. Therefore, using the rock digital core model to carry out the related research is a necessary and effective method to accomplish this task. In the process of establishing the microscopic model, we fuse the conclusion that the micro crack in the low permeability rock is closed with the increase of effective stress. On the basis of the pore structure model, the three-dimensional pore of the rock is established. Micro crack model. By adding the micro crack of random structure on the basis of the three-dimensional pore structure model of rock, the pore micro crack model is formed. In the analysis, the pore micro crack model represents the micro structure inside the low permeability rock under the lower effective stress range, and the pore model represents the inner rock within the high effective stress range. The establishment of the two sets of models can be used to compare and analyze the influence of microstructure evolution on rock permeability. Again, we use the lattice Boltzmann method, Lattice Boltzmann Method (LBM), to compare and analyze the velocity distribution of the internal fluid in the two groups of models, and convert the permeability.LBM of the two models. The analysis of the permeability of the digital core model with complex discontinuous structures is a natural advantage compared with the traditional computational fluid mechanics method which is difficult to consider complex boundary. It is found that the existence of micro cracks greatly increases the effective flow channel inside the model. Although the pore volume of the micro crack accounts for the pore volume. It is very small, but as the key flow channel, their existence greatly improves the permeability of rock. Establishing the pore and micro crack structure of rock inside the micro scale, considering the change of the pore structure due to the stress change, and using the LBM method to study the flow properties of the internal fluid in the structure can be used to analyze the micropores quantitatively and quantitatively. The relationship between gap structure and rock permeability. Through LBM flow simulation, we intuitively show the great influence of micro cracks on rock permeability. In general, the analysis based on the micro numerical model of rock can help us to understand and understand the external performance of rock macroscopic physical and mechanical properties more deeply. In this paper, the stress sensitivity of low permeability rock permeability is analyzed in detail from two aspects of macro and micro levels. In the macroscopic description, with the help of TPHM model, the porosity of low permeability rocks and the law of permeability change with effective stress are established. In the microcosmic aspect, the pore micro crack model is built, and the LBM method is used to simulate the model. The flow law of the internal fluid in the model shows the great contribution of the micro crack to the permeability of the model. The analysis shows that the micro cracks in the low permeability rocks produce relatively large deformation under stress, which is the intrinsic reason for the external performance of the permeability stress sensitivity of low permeability rocks.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 殷艷玲;;孔隙結(jié)構(gòu)分形維數(shù)測(cè)試與應(yīng)用研究進(jìn)展[J];內(nèi)蒙古石油化工;2008年09期
2 周南翔;石勇;王壽慶;;油層孔隙結(jié)構(gòu)分析的模糊數(shù)學(xué)方法[J];石油勘探與開發(fā);1984年05期
3 李合蓮;陳家軍;楊建;;松散多孔介質(zhì)孔隙結(jié)構(gòu)的分形及統(tǒng)計(jì)特性[J];工程勘察;2009年10期
4 孟巧榮;趙陽升;胡耀青;馮增朝;于艷梅;;焦煤孔隙結(jié)構(gòu)形態(tài)的實(shí)驗(yàn)研究[J];煤炭學(xué)報(bào);2011年03期
5 陳亮;譚凱旋;劉江;曾晟;;新疆某砂巖鈾礦含礦層孔隙結(jié)構(gòu)的分形特征[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
6 楊永良;李增華;季淮君;彭英健;劉震;;煤中可溶有機(jī)質(zhì)對(duì)煤的孔隙結(jié)構(gòu)及甲烷吸附特性影響[J];燃料化學(xué)學(xué)報(bào);2013年04期
7 蔡忠;王偉鋒;侯加根;;利用測(cè)井資料研究儲(chǔ)層的孔隙結(jié)構(gòu)[J];地質(zhì)論評(píng);1993年S1期
8 毛志強(qiáng),譚廷棟,林純?cè)?王青;完全含水多孔巖石電學(xué)性質(zhì)及其孔隙結(jié)構(gòu)實(shí)驗(yàn)研究[J];石油學(xué)報(bào);1997年03期
9 汪偉英;原油組分、孔隙結(jié)構(gòu)對(duì)自吸的影響[J];大慶石油地質(zhì)與開發(fā);2000年06期
10 馬新仿,張士誠,郎兆新;用分段回歸方法計(jì)算孔隙結(jié)構(gòu)的分形維數(shù)[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年06期
相關(guān)會(huì)議論文 前10條
1 王桂蓮;李德建;何滿潮;楊國興;臺(tái)啟民;;巖石吸水特性及其孔隙結(jié)構(gòu)變化研究[A];中國軟巖工程與深部災(zāi)害控制研究進(jìn)展——第四屆深部巖體力學(xué)與工程災(zāi)害控制學(xué)術(shù)研討會(huì)暨中國礦業(yè)大學(xué)(北京)百年校慶學(xué)術(shù)會(huì)議論文集[C];2009年
2 王中言;方華;白武明;;砂巖孔隙結(jié)構(gòu)的圖象分析及其物理意義[A];1995年中國地球物理學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];1995年
3 陳紅宇;范明;陳偉鈞;;壓汞法、氣體吸附法聯(lián)合測(cè)定巖石的孔隙結(jié)構(gòu)[A];第十屆全國有機(jī)地球化學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2005年
4 張?jiān)?孟英峰;;非均質(zhì)多孔介質(zhì)孔隙結(jié)構(gòu)與聲波速度的關(guān)系[A];1998年中國地球物理學(xué)會(huì)第十四屆學(xué)術(shù)年會(huì)論文集[C];1998年
5 張建華;張金喜;劉英;;不同含氣量的混凝土孔隙結(jié)構(gòu)研究[A];中國公路學(xué)會(huì)2005年學(xué)術(shù)年會(huì)論文集(上)[C];2005年
6 孫薔;張向倩;陸安慧;;核殼限域空間內(nèi)納米炭球孔隙結(jié)構(gòu)的調(diào)控[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
7 唐剛;晏信飛;楊志芳;曹宏;;致密砂巖孔隙結(jié)構(gòu)CT成像及等效速度預(yù)測(cè)[A];中國地球物理2013——第二十三專題論文集[C];2013年
8 張璨;郭德勇;;構(gòu)造煤的孔隙結(jié)構(gòu)及對(duì)CH_4的吸附性研究[A];瓦斯地質(zhì)研究進(jìn)展2013[C];2013年
9 郝耐;王永亮;毛靈濤;劉慶;;基于壓汞法的煤巖孔隙結(jié)構(gòu)實(shí)驗(yàn)研究與分形特性分析[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
10 肖立志;朱國欽;高守雙;金振武;;核磁共振新技術(shù)在巖芯分析中的應(yīng)用[A];1994年中國地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年
相關(guān)博士學(xué)位論文 前9條
1 斯春松;準(zhǔn)噶爾盆地西北緣中二疊統(tǒng)一下三疊統(tǒng)扇三角洲砂礫巖儲(chǔ)層孔隙結(jié)構(gòu)表征及成因機(jī)制[D];中國地質(zhì)大學(xué);2014年
2 季淮君;可溶有機(jī)質(zhì)對(duì)煤層瓦斯儲(chǔ)運(yùn)特性影響機(jī)理研究[D];中國礦業(yè)大學(xué);2015年
3 張靜平;腐泥型有機(jī)質(zhì)孔隙結(jié)構(gòu)及吸附特征研究[D];中國地質(zhì)大學(xué)(北京);2012年
4 鄭江韜;低滲透巖石的應(yīng)力敏感性與孔隙結(jié)構(gòu)三維重構(gòu)研究[D];中國礦業(yè)大學(xué)(北京);2016年
5 李想;鋁用碳陰極孔隙結(jié)構(gòu)及鈉滲透—膨脹—蠕變過程研究[D];北京科技大學(xué);2015年
6 李景巖;杏南開發(fā)區(qū)儲(chǔ)層微觀孔隙結(jié)構(gòu)研究及應(yīng)用[D];中國海洋大學(xué);2012年
7 殷艷玲;低滲透砂巖油藏孔隙結(jié)構(gòu)及水驅(qū)油效率研究[D];中國地質(zhì)大學(xué)(北京);2010年
8 任曉娟;低滲砂巖儲(chǔ)層孔隙結(jié)構(gòu)與流體微觀滲流特征研究[D];西北大學(xué);2006年
9 李偉;PIP工藝制備C_f/SiC復(fù)合材料孔隙結(jié)構(gòu)及其傳熱傳質(zhì)特性研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 孫經(jīng)偉;農(nóng)業(yè)恢復(fù)措施對(duì)黑土母質(zhì)發(fā)育的新成土土壤結(jié)構(gòu)性質(zhì)的影響[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 王合明;多孔介質(zhì)孔隙結(jié)構(gòu)的分形特征和網(wǎng)絡(luò)模型研究[D];大連理工大學(xué);2013年
3 張淑婷;D油田P油層孔隙結(jié)構(gòu)類型及特征研究[D];燕山大學(xué);2014年
4 于華偉;單顆粒煤孔隙結(jié)構(gòu)的數(shù)值模擬研究[D];內(nèi)蒙古科技大學(xué);2014年
5 張曉輝;韓城礦區(qū)構(gòu)造煤孔隙結(jié)構(gòu)多尺度下的精細(xì)表征[D];太原理工大學(xué);2014年
6 賈良晨;煤焦孔隙結(jié)構(gòu)對(duì)焦炭氮釋放特性影響試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2014年
7 李庚;燃燒過程中煤?紫督Y(jié)構(gòu)變化及對(duì)顆粒物的影響[D];華中科技大學(xué);2005年
8 郭紅光;復(fù)雜斷塊油層中高含水期巖心孔隙結(jié)構(gòu)的網(wǎng)絡(luò)模型研究[D];東北石油大學(xué);2011年
9 聶晶;應(yīng)用測(cè)井資料分析微孔隙結(jié)構(gòu)的方法研究[D];大慶石油學(xué)院;2009年
10 鄭飛;不同壓實(shí)度黏性土微細(xì)觀孔隙結(jié)構(gòu)研究及分形表征[D];湖北工業(yè)大學(xué);2014年
,本文編號(hào):1976580
本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/1976580.html