西藏尼瑪?shù)貐^(qū)古近系牛堡組古湖平面變化的沉積地球化學記錄
本文選題:尼瑪盆地 + 牛堡組 ; 參考:《成都理工大學》2017年博士論文
【摘要】:根據(jù)巖相類型和地球物理探測手段所重建的古湖平面變化易受制于地表露頭條件、取芯連續(xù)程度及地震分辨率等的影響。為此,本論文嘗試著從沉積地球化學角度重建古湖平面變化。以西藏尼瑪?shù)貐^(qū)古近系牛堡組湖相地層為研究材料,通過野外地質調(diào)查和室內(nèi)測試分析,應用沉積學、穩(wěn)定同位素地球化學、有機地球化學及古湖泊學等方法和理論,針對沉積相及沉積環(huán)境演化、古湖泊水文特征、鹽度特征及溫度特征、有機質類型、豐度及成熟度進行了分析,探討了西藏尼瑪?shù)貐^(qū)古近系牛堡組湖相地層古湖平面變化的沉積地球化學記錄。通過剖面實測觀察和巖石薄片鑒定,查昂巴剖面古近系牛堡組湖相地層頂、底發(fā)育扇三角洲相沉積,湖相地層自下而上發(fā)育半深湖-深湖亞相—濱淺湖亞相—半深湖-深湖亞相—濱淺湖亞相的旋回沉積。在此過程中,剖面有五次水體深度較大時期,分別對應著五層烴源巖——灰黑色鈣質泥頁巖。碳酸鹽碳、氧穩(wěn)定同位素測試結果顯示,δ~(13)C值介于-4.40‰~2.20‰之間,δ~(18)O值介于-10.60‰~-4.10‰之間,分布范圍同現(xiàn)代和古代世界上其他地區(qū)湖相碳酸鹽基本一致。δ~(13)C值和δ~(18)O值呈正相關關系,Z值介于114.50~126.53之間,古溫度介于8.94~39.16℃之間。綜合分析確定古湖泊為封閉型咸化湖泊,古溫度分布與現(xiàn)代湖泊水溫相一致,更多地反映溫暖季節(jié)湖泊水溫狀態(tài)。有機質類型以Ⅱ1型和Ⅱ2型為主,含有少量Ⅰ型和Ⅲ型,反映有機質來源以內(nèi)源為主,隨著保存條件變?nèi)鹾完懺从袡C質輸入量增大,有機質類型向Ⅲ型轉化。TOC介于0.10%~2.97%之間,生烴潛力(S_0+S_1+S_2)介于39.34mg/g~630.22mg/g之間,顯示湖泊初級生產(chǎn)力較高。無定形有機質含量介于35.00%~97.00%之間,其中有93.33%的大于50.00%,結合HI-TOC相關變化分析,較強的還原性沉積環(huán)境是控制有機質類型和豐度的主導因素,較高的湖泊初級生產(chǎn)力是重要的輔助因素。Tmax介于434~494℃之間,H/C原子比介于1.09~1.77之間,腐泥組顏色為棕色和棕黃色,反映有機質成熟度處于未成熟到成熟階段,意味著干酪根結構和組成破壞程度偏低。論證了湖水δ~(18)O值和δ~(13)C_(DIC)值、有機質HI值、δ~(13)C_(org)值及TOC值與湖平面變化的關系。受入流量與蒸發(fā)量之比的影響,湖平面上升,湖水δ~(18)O值減小,而湖平面下降,湖水δ~(18)O值增大。當湖泊初級生產(chǎn)力較低,湖水δ~(13)C_(DIC)值和δ~(18)O值呈正相關變化,湖平面上升,湖水δ~(13)C_(DIC)值減小,而湖平面下降,湖水δ~(13)C_(DIC)值增大;當湖泊初級生產(chǎn)力較高,使得湖泊水生植物光合作用成為控制古湖水δ~(13)C_(DIC)值組成的主導因素時,湖水δ~(13)C_(DIC)值和δ~(18)O值呈反相關變化,湖平面上升,湖水δ~(13)C_(DIC)值增大,而湖平面下降,湖水δ~(13)C_(DIC)值減小。受有機質來源的影響,湖平面上升,陸源有機質貢獻相對減小,HI值和δ~(13)C_(org)值增大,而湖平面下降,陸源有機質貢獻相對增多,HI值和δ~(13)C_(org)值減小。受湖泊初始生產(chǎn)力和沉積環(huán)境的影響,湖平面上升,TOC值增大,而湖平面下降,TOC值減小。利用這些指標恢復了查昂巴剖面古近系牛堡組湖相地層古湖平面變化歷史,表現(xiàn)為局部對稱性突發(fā)上升與回落、總體階步式升高與下降的波動特征。各記錄均能反映古湖平面升降過程,HI值和δ~(13)C_(org)值的記錄更為細致,僅能反映古湖平面變化的波動過程,而無法記錄變化幅度與趨勢。但δ~(13)C_(org)值的記錄在半深湖-深湖沉積地層較為有效,而在濱淺湖沉積地層效果欠佳。古湖水δ~(18)O值、δ~(13)C_(DIC)值及TOC值的記錄還能反映古湖平面升降過程、變化趨勢及幅度,前兩者反映的是半深湖-深湖沉積地層的古湖平面變化,而無法記錄濱淺湖沉積地層的古湖平面變化,但TOC值的記錄沒有這一限制。同時,指出應用這些指標重建古湖平面變化的條件:封閉型咸化湖泊,有機質來源以內(nèi)源為主,有機質類型以Ⅱ型為主,有機質保存受沉積環(huán)境控制,水體分層,有機質成熟度不能過高,越低越好。古湖水δ~(18)O值和δ~(13)C_(DIC)值主要記錄的是半深湖-深湖沉積古湖平面變化歷史,而HI值、δ~(13)C_(org)值和TOC值則基本不受這一限制,但δ~(13)C_(org)值記錄的濱淺湖沉積古湖平面變化需謹慎對待。最后,預測出尼瑪盆地查昂巴剖面最佳烴源巖層位處于150m附近。
[Abstract]:The changes in the paleo Lake plane, which are based on the lithofacies type and geophysical exploration means, are easily affected by the surface outcrop conditions, the continuity of the core and the seismic resolution. Therefore, this paper attempts to reconstruct the paleo Lake plane change from the sedimentary geochemistry angle. The study materials are the lacustrine facies of the nimpu group in the nimma region of Tibet. Through field geological survey and indoor test analysis, the methods and theories of sedimentology, stable isotope geochemistry, organic geochemistry and paleolakes are used to analyze the evolution of sedimentary facies and sedimentary environment, the characteristics of paleolake hydrology, Salinity Characteristics and temperature characteristics, organic matter type, abundance and maturity, and discuss the Tibet Nepal The sedimentary geochemistry records of the paleo lake level changes in the Paleogene Niu Bao formation of the Paleogene of the Ma area. Through the observation of the profile and the identification of the rock slices, the Chaoba section of the Paleogene Niu Bao formation is the top of the lacustrine stratum, the bottom of the fan delta facies, the lower part of the lacustrine strata from the bottom to the bottom of the lake, the subfacies of the shallow lake, the half deep lake and the deep lake. In this process, there are five depths of water depth in the section, which correspond to five layers of source rocks, gray and black calcium shale. Carbonate carbon and oxygen stable isotopes show that the value of delta ~ (13) C is between -4.40 and ~2.20 per thousand, and the value of delta ~ (18) O is between -10.60 and ~-4.10 per thousand. The range is basically the same as the lacustrine carbonate in the modern and ancient world. The value of delta ~ (13) C and delta ~ (18) O is positively correlated, the Z value is between 114.50~126.53, and the paleotemperature is between 8.94~39.16 C. The comprehensive analysis determines that the ancient lake berth is a closed salty lake, the distribution of the paleotemperature is in accordance with the modern lake water temperature, and more reflect the temperature. The main types of organic matter in the warm season are type II 1 and type II 2, containing a small amount of type I and type III, reflecting the source of organic matter in the internal source. With the weakening of the preservation conditions and the increase of the input of the organic matter in the land source, the transformation of organic matter to type III is between the.TOC and the 0.10%~2.97%, and the hydrocarbon potential (S_0+S_1+S_2) is between 39.34mg/g~630.22m. G/g shows that the primary productivity of lakes is higher. The content of amorphous organic matter is between 35.00%~97.00% and 93.33%, which is more than 50%. Combining with the correlation analysis of HI-TOC, the strong reductive sedimentary environment is the dominant factor to control the types and abundance of organic matter. The higher primary productivity of the lake is an important auxiliary factor,.Tmax Between 434~494 and 1.09~1.77, the ratio of H/C atom is between 1.09~1.77 and brown and brown, reflecting the maturity of organic matter in immature to mature stage, which means that the structure and composition of the kerogen are low. The value of delta ~ (18) O and delta ~ (13) C_ (DIC), HI value of organic matter, delta ~ (13) C_ (ORG) value and TOC value and the lake level are demonstrated. The change is influenced by the ratio of flow and evaporation. The lake level rises, the lake delta ~ (18) O value decreases, the lake level decreases and the lake water delta ~ (18) O values increase. When the lake primary productivity is low, the lake water delta ~ (13) C_ (DIC) values and delta ~ (18) O values are positively correlated, the lake level rises, the lake water delta ~ (13) C_ (DIC) values decrease, while lake level drops, lake water delta The value of ~ (13) C_ (DIC) increases; when lake primary productivity is high, when the photosynthesis of lake aquatic plants is the dominant factor controlling the value of the delta ~ (13) C_ (DIC) value of the lake water, the delta ~ (13) C_ (DIC) value and Delta ~ (18) O value of lake water are inverse correlation, the lake level rises, the lake delta ~ (13) C_ (DIC) value increases, the lake level drops, and the lake water delta ~ (13) C_ (DIC) values decrease. Influenced by the organic matter, the lake level rises, the contribution of the land source organic matter is relatively reduced, the value of HI and delta ~ (13) C_ (ORG) increases, while the lake level decreases, the contribution of the land source organic matter is relatively increased, the HI value and the delta ~ (13) C_ (ORG) value decrease. The lake level rises, the TOC value increases, and the lake level drops, the lake level drops, TOC is affected by the lake initial productivity and the sedimentary environment. The history of the lake level changes in the lake facies stratum of the Paleogene niupburg formation of the section of the Charles Ba section was restored by these indexes, which showed the sudden rise and fall of the local symmetry and the fluctuation characteristics of the overall step type and descent. All records could reflect the ascending and descending process of the ancient lake plane, and the record of HI value and delta ~ (13) C_ (ORG) value is more meticulous and only can be recorded. It reflects the fluctuation process of the change of the ancient lake plane, but can not record the change amplitude and trend. But the record of the delta ~ (13) C_ (ORG) value is more effective in the semi deep lake deep lake sedimentary strata, but the effect of the sedimentary strata in the shallow lake is not good. The record of the delta ~ (18) O value, the delta ~ (13) C_ (DIC) value and the TOC value of the ancient lake water can also reflect the ascending and lowering process of the ancient lake plane, and the trend of the change and the change trend. The amplitude and the former two reflect the paleo lake level changes in the semi deep lake deep lake sedimentary strata, but can not record the ancient lake level changes in the shallow lake sedimentary strata, but the record of the TOC value is not limited. At the same time, it is pointed out that the conditions for the application of these indexes to reconstruct the changes of the ancient lake level: the closed salty lake, the organic matter from the internal source, and the organic matter. The mass type is dominated by type II, the preservation of organic matter is controlled by the sedimentary environment, the water layer is stratified and the maturity of organic matter can not be too high, the lower the better. The value of delta ~ (18) O and ~ (13) C_ (DIC) of the ancient lake water is mainly recorded in the history of the paleo lake level change in the semi deep lake deep lake, while the HI value, delta ~ (13) C_ (ORG) value and TOC value are basically not restricted by this limit, but delta ~ (13) C_ (ORG) the shallow lake sediments should be treated with caution. Finally, it is predicted that the best source rocks in the 150m section near the upper part of the basin are in the vicinity.
【學位授予單位】:成都理工大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:P618.13;P534.611
【參考文獻】
相關期刊論文 前10條
1 密文天;朱利東;楊文光;楊林;黃輝;;西藏尼瑪盆地北部古近系牛堡組物源及地質意義[J];地球科學;2017年02期
2 焦朝維;張元福;王倩茹;關超;;對湖平面下降的定量計算的水槽實驗[J];科學技術與工程;2016年34期
3 LIU XiaoHui;XU Qiang;DING Lin;;Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau[J];Science China(Earth Sciences);2016年11期
4 曹姝璐;朱志軍;劉騰;劉遠超;饒強;;信江盆地白堊紀周田組碳、氧同位素特征及意義[J];四川地質學報;2016年03期
5 吳珍漢;張其超;吳艷君;葉培盛;;西藏色林錯及鄰區(qū)古近紀沉積凹陷對地殼增厚的響應[J];地質學報;2016年09期
6 黃一民;宋獻方;章新平;何清華;韓青;凡非得;賀偉;;洞庭湖流域不同水體中同位素研究[J];地理科學;2016年08期
7 史曉宜;蒲燾;何元慶;陸浩;牛賀文;夏敦勝;;典型溫冰川區(qū)湖泊的穩(wěn)定同位素空間分布特征[J];環(huán)境科學;2016年05期
8 沈立建;劉成林;王立成;;云南蘭坪盆地古近系云龍組上段沉積環(huán)境研究——來自碳、氧同位素的證據(jù)[J];地球學報;2016年03期
9 曹懷仁;胡建芳;席黨鵬;彭平安;雷艷;;松遼盆地后金溝剖面烴源巖地球化學特征及其古環(huán)境重建[J];沉積學報;2015年05期
10 范佳偉;肖舉樂;溫銳林;翟大有;王旭;崔琳琳;Shigeru Itoh;;內(nèi)蒙古達里湖全新世有機碳氮同位素記錄與環(huán)境演變[J];第四紀研究;2015年04期
相關會議論文 前1條
1 張智禮;曹立君;張銘;;松遼盆地姚家組介形類組合與湖平面升降[A];第八屆古地理學與沉積學學術會議論文摘要集[C];2004年
相關博士學位論文 前2條
1 孔銳;中國油氣市場與戰(zhàn)略儲備研究[D];成都理工大學;2012年
2 朱偉林;中國近海含油盆地古湖泊學研究[D];同濟大學;2002年
相關碩士學位論文 前8條
1 王丹;柴達木盆地北緣油—氣—煤—鈾共存及其地質意義[D];西北大學;2015年
2 劉琴;青藏高原及其周邊地區(qū)地表水氫氧穩(wěn)定同位素空間變化特征[D];西南大學;2014年
3 王尹;南雄盆地晚白堊世—早古新世古氣候變化[D];南京大學;2012年
4 周勇;西北酒泉和六盤山盆地早白堊世古氣候[D];成都理工大學;2011年
5 楊林;西藏尼瑪盆地北部坳陷古近紀沉積記錄研究[D];成都理工大學;2011年
6 武景龍;西藏尼瑪盆地南部坳陷古近紀沉積記錄研究[D];成都理工大學;2011年
7 武向峰;柴達木盆地西部上、下干柴溝組湖平面變化程式及控制因素[D];成都理工大學;2010年
8 姚遠;德令哈尕海硼元素法定量恢復古鹽度及其古氣候意義[D];中國科學院研究生院(青海鹽湖研究所);2005年
,本文編號:1956104
本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/1956104.html