地層化學元素測井儀研發(fā)中的關鍵技術研究
發(fā)布時間:2018-04-28 01:42
本文選題:地層化學元素 + 標準譜; 參考:《吉林大學》2015年碩士論文
【摘要】:國際上,斯侖貝謝、哈里伯頓、貝克-阿特拉斯、俄羅斯測井公司等多家公司已經(jīng)研制出了地層化學元素測井儀器。該儀器能從巖石成分的角度來解決復雜巖性識別這一難題,并能很好的識別頁巖氣和煤層氣,是一種能夠全面評價儲層的新技術。地層化學元素測井已經(jīng)成為新一代測井技術中不可缺少的重要方法。所以確立開發(fā)地層化學元素測井儀器的研究課題,是學習國外儀器的先進設計經(jīng)驗,擺脫落后、跟蹤世界先進技術的需要。經(jīng)過前期的調研工作,掌握了目前國內(nèi)外地層化學元素測井技術的發(fā)展現(xiàn)狀,并且針對國外測井公司現(xiàn)有的元素測井儀器進行了對比分析。各國外測井公司元素測井儀器所使用的放射源、探測器、儀器尺寸、測速、標準譜的建立方法和解譜方法等各不相同,這都是在儀器研制過程中需要解決的問題。本文著重對元素測井標準譜的獲得和解譜方法進行研究。本文介紹了元素測井的理論基礎、儀器的測量原理及解釋流程。并且使用蒙特卡羅模擬技術建立了地層模型及儀器模型,模擬過程中使用多群截面數(shù)據(jù)和解伴隨輸運方程,采用中子、光子、電子分級運輸和聯(lián)合運輸?shù)穆?lián)合方式,分情況,分截面的聯(lián)合運算,使模擬盡量接近實際應用效果。并以大慶測井公司現(xiàn)有的碳氧比儀器的相關參數(shù)對理論模型進行了驗證,并且成功在純水條件下模擬了碳氧比儀器的響應特征,證明了建立模型以及獲取標準譜方法的正確性。從而進一步完善參數(shù),深化研究,在其它巖性和地層流體狀態(tài)下進行模擬分析,從而獲得地層元素的標準譜。獲得元素的標準譜之后,著力進行解譜方法的研究。為了消除儀器在硬件上的差異造成測量誤差,進行了儀器刻度方法的研究;為了解決儀器在測量過程中測量譜線的漂移問題,進行了Marquardt非線性迭代方法研究,也就是穩(wěn)譜方法的研究;為了獲得元素的干重,進行了剝譜處理方法研究;在干燥地層中的元素都是以氧化物的形式存在的,所以各種氧化物的百分含量之和應為1,所以為了獲得元素在地層中的百分含量,進行了氧化物閉合方法研究;為了將獲得各種元素百分含量對應到相應的巖性,進行了巖性分析方法研究。綜合上述研究方法,可以對實際測量的譜線進行解譜分析。并且儀器樣機研制成功過后,儀器進行了室內(nèi)模擬測試及物理指標測試,驗證的結果均達到了研制的要求。儀器樣機進行了現(xiàn)場試驗,在大慶鉆探工程公司測井公司研究一所刻度樓的刻度井井群中試驗了6口井,現(xiàn)場井試驗25口次,其中包括調整井14口,外圍開發(fā)井4口,探井7口。由解釋專家對儀器進行重復性以及一致性評價,從而驗證了儀器具有良好的重復性,與斯倫貝謝的ECS儀器具有較好的一致性。進一步驗證了此次研究工作中標準譜的獲取以及解譜方法的正確性。
[Abstract]:Internationally, Schlumberger, Halliburton, Becke-Atlas, Russian logging Company and other companies have developed formation chemical element logging tools. This instrument can solve the difficult problem of complex lithology identification from the point of view of rock composition, and can recognize shale gas and coalbed methane well. It is a new technology that can comprehensively evaluate reservoir. Formation chemical element logging has become an indispensable and important method in the new generation of logging technology. Therefore, it is necessary to study the advanced design experience of foreign instruments, get rid of backwardness and track the advanced technology in the world. Through previous investigation and investigation, the present situation of formation chemical element logging technology at home and abroad is grasped, and the existing elemental logging tools of foreign logging companies are compared and analyzed. The radioactive sources, detectors, instrument dimensions, velocimetry, methods of establishing standard spectra and spectral methods used by foreign logging companies are different, which are the problems to be solved in the process of instrument development. This paper focuses on the method of obtaining the standard spectrum of element logging. This paper introduces the theoretical basis of element logging, the measuring principle and interpretation flow of the instrument. And the formation model and instrument model are established by Monte Carlo simulation technique. In the simulation process, multi-group cross-section data are used to solve the accompanying transport equation, and the combined mode of neutron, photon, electron transport and combined transport is adopted. The combined operation of cross section makes the simulation as close as possible to the practical application effect. The theoretical model is verified by the relevant parameters of the existing carbon-oxygen ratio instruments in Daqing logging Company, and the response characteristics of the carbon-oxygen ratio instruments are successfully simulated under pure water condition, which proves the correctness of the model and the method of obtaining the standard spectrum. In order to further improve the parameters, deepen the study, in other lithology and formation fluid state simulation analysis, thus obtaining the standard spectrum of formation elements. After obtaining the standard spectrum of elements, the method of despectral analysis was studied. In order to eliminate the measurement error caused by the hardware difference of the instrument, the calibration method of the instrument is studied, and the Marquardt nonlinear iterative method is studied to solve the problem of the drift of the spectrum line in the measurement process of the instrument. In order to obtain the dry weight of the elements, the method of spectrum stripping is studied. The elements in the dry strata are all in the form of oxides. Therefore, the sum of the percent contents of various oxides should be 1, so in order to obtain the percent content of elements in the strata, the method of oxide closure was studied; in order to get the percent content of various elements corresponding to the corresponding lithology, The lithologic analysis method is studied. The above research methods can be used to analyze the spectral lines measured in practice. After the development of the prototype, the instrument has been tested by indoor simulation and physical index, and the results of verification have met the requirements of the development. Field tests were carried out on the prototype of the instrument, and 6 wells were tested in a calibration well group studied by Daqing drilling Engineering Company logging Company. Twenty-five wells were tested in the field, including 14 adjustment wells and 4 peripheral development wells. There are seven exploratory wells. The repeatability and consistency of the instrument are evaluated by the interpreter, which proves that the instrument has good repeatability and is in good agreement with Schlumberger's ECS instrument. The method of obtaining the standard spectrum and the method of resolving the spectrum are further verified.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:P631.83
【參考文獻】
相關期刊論文 前10條
1 徐琳;劉建辰;靜中興;;地層元素分析測井儀研制[J];石油儀器;2014年05期
2 張鋒;劉軍濤;冀秀文;袁超;;地層元素測井技術最新進展及其應用[J];同位素;2011年S1期
3 王智;金立新;關強;楊雷;吳金龍;;基于FMI與ECS的火山巖儲層綜合評價方法[J];西南石油大學學報(自然科學版);2010年05期
4 蔡曉波;劉東友;李敏;程靜;;自然伽馬能譜測井儀探測器的線性改進研究[J];艦船防化;2010年05期
5 韓琳;潘保芝;;利用ECS測井資料反演火山巖中礦物含量[J];物探化探計算技術;2009年02期
6 張鋒;王新光;;利用俘獲伽馬能譜確定飽和度的可行性及蒙特卡羅模擬研究[J];地球物理學進展;2009年01期
7 劉應華;趙軍;胡洪;尹國慶;顧宏偉;;ECS在塔里木復雜地層中的應用[J];國外測井技術;2008年06期
8 譚鋒奇;李洪奇;姚振華;董政;;元素俘獲譜測井在火山巖儲層孔隙度計算中的應用[J];國外測井技術;2008年06期
9 黃炳升;林謙;;伴隨粒子碳氧比測井的應用[J];清華大學學報(自然科學版);2007年S1期
10 龐巨豐;李敏;;地層元素測井中子-伽馬譜解析方法的實際應用[J];同位素;2006年04期
相關博士學位論文 前1條
1 馮慶付;大慶徐家圍子地區(qū)深層火成巖氣藏測井解釋方法研究[D];中國海洋大學;2007年
,本文編號:1813227
本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/1813227.html