拋物Radon變換重建地震數(shù)據(jù)方法研究
發(fā)布時間:2018-03-18 19:19
本文選題:地震數(shù)據(jù)重建 切入點:拋物Radon變換 出處:《東北石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:地震勘探的目的是為了得到地下介質(zhì)的精確成像。然而由于環(huán)境和人為因素的影響,地震數(shù)據(jù)在空間方向上不可避免的出現(xiàn)采樣間距過大、數(shù)據(jù)缺失或不規(guī)則采樣等現(xiàn)象,這會降低疊前偏移成像質(zhì)量、減弱多次波壓制效果、影響后續(xù)速度分析精度。為保證地震資料后續(xù)處理技術(shù)的準(zhǔn)確使用,必須對缺失的地震數(shù)據(jù)進行重建。拋物Radon變換是一種穩(wěn)健有效的地震數(shù)據(jù)重建方法,通過多次迭代經(jīng)過部分動校正后的CMP道集,就可實現(xiàn)不規(guī)則地震數(shù)據(jù)的有效重建。該方法對輸入數(shù)據(jù)要求較少,方法簡單,易于實現(xiàn)。但面對疊前資料處理數(shù)據(jù)量巨大的問題,計算效率的高低成為好的算法是否實用的關(guān)鍵。傳統(tǒng)拋物Radon變換方法在地震數(shù)據(jù)重建過程中,需要多次迭代Radon正反變換,計算量過大,直接矩陣求逆算法在求解拋物Radon正變換過程中計算效率較低,而且使用傳統(tǒng)的曲率參數(shù)采樣準(zhǔn)則可能會產(chǎn)生振幅異常和假頻問題。本文在傳統(tǒng)Radon變換的基礎(chǔ)上,完成以下方面內(nèi)容:一是改進最小二乘拋物Radon變換地震數(shù)據(jù)重建方法,通過使用新的曲率參數(shù)采樣準(zhǔn)則抑制了振幅異常和假頻的產(chǎn)生,應(yīng)用Levinson遞推法代替直接矩陣求逆的方法,提高了計算效率。二是提出應(yīng)用高分辨率拋物Radon變換方法進行地震數(shù)據(jù)規(guī)則化重建。該方法在最小二乘拋物Radon變換的基礎(chǔ)上,引入稀疏約束矩陣,提高地震數(shù)據(jù)在Radon域的分辨率,從而減少拋物Radon變換重建地震數(shù)據(jù)的迭代次數(shù),減小計算量。三是?-f域加權(quán)拋物Radon變換地震數(shù)據(jù)重建方法,通過引入新變量?,消除了Radon變換算子對頻率的依賴,使得Radon變換算子及算子的逆只需計算一次,顯著提高計算效率。在迭代過程中,引入變化的權(quán)系數(shù),更好地實現(xiàn)了?-f域的能量聚焦。
[Abstract]:The purpose of seismic exploration is to obtain accurate imaging of underground media. However, due to the influence of environment and human factors, the spatial space of seismic data is inevitably too large, the data is missing or irregular sampling, and so on. This will reduce the imaging quality of prestack migration, weaken the suppression effect of multiple waves, and affect the accuracy of subsequent velocity analysis. Parabolic Radon transform is a robust and effective method for seismic data reconstruction, and the CMP gather after partial NMO correction is iterated several times. This method requires less input data, and is simple and easy to implement. However, in the face of the problem of large amount of data in pre-stack data processing, this method can be used to reconstruct irregular seismic data effectively. The efficiency of calculation becomes the key to the practicability of good algorithms. In the process of seismic data reconstruction, the traditional parabolic Radon transformation method needs many iterations of Radon positive and negative transformations, and the computation is too large. The direct matrix inverse algorithm is inefficient in solving the parabolic Radon positive transformation, and the amplitude anomaly and false frequency may be caused by using the traditional curvature parameter sampling criterion. In this paper, on the basis of the traditional Radon transform, the amplitude anomaly and the false frequency problem may be caused by using the traditional curvature parameter sampling criterion. The main contents are as follows: firstly, the reconstruction method of seismic data based on least square parabolic Radon transform is improved. The amplitude anomaly and false frequency are restrained by using the new curvature parameter sampling criterion, and the inverse method of direct matrix is replaced by Levinson recursive method. The computation efficiency is improved. Secondly, the high resolution parabolic Radon transform method is proposed to regularize the reconstruction of seismic data. Based on the least square parabolic Radon transform, the sparse constraint matrix is introduced. Improve the resolution of seismic data in Radon domain, thus reduce the number of iterations of parabolic Radon transform to reconstruct seismic data, reduce the amount of calculation. The method of seismic data reconstruction based on weighted parabolic Radon transform in -f domain is introduced by introducing new variables. By eliminating the dependence of Radon transform operator on frequency, the Radon transform operator and its inverse only need to be calculated once, and the computational efficiency is improved significantly. In the iterative process, the variable weight coefficient is introduced to realize better? The energy focusing in the -f domain.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P631.4
【參考文獻】
相關(guān)期刊論文 前1條
1 唐歡歡;毛偉建;;3D高階拋物Radon變換地震數(shù)據(jù)保幅重建[J];地球物理學(xué)報;2014年09期
,本文編號:1630947
本文鏈接:http://www.sikaile.net/kejilunwen/diqiudizhi/1630947.html
最近更新
教材專著