天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電子信息論文 >

單晶鍺微納米切削脆塑轉(zhuǎn)變機理研究

發(fā)布時間:2018-08-12 11:16
【摘要】:隨著微納米加工技術的不斷發(fā)展,單晶鍺等脆性材料在紅外光學、微機電系統(tǒng)等高科技領域的應用日益廣泛,這些領域?qū)Σ牧系谋砻婕庸ぞ纫呀?jīng)達到了納米量級,這就需要超精密的加工理論和方法作為支撐。在納米加工過程中,為了使單晶鍺等脆性材料以塑性切削的方式去除從而獲得高質(zhì)量的光學表面,其關鍵是控制條件實現(xiàn)脆塑轉(zhuǎn)變,這往往需要把切削深度控制在納米量級。由于單晶鍺是硬脆材料并存在各向異性,確定脆塑轉(zhuǎn)變臨界切削厚度對實現(xiàn)脆塑轉(zhuǎn)變從而切削出一致光滑的表面至關重要。但單晶鍺等脆性材料的塑性域切削一直沒有形成統(tǒng)一的理論認識和加工方法。本文借助分子動力學仿真、納米壓痕和劃痕實驗及理論分析等方法研究了單晶鍺不同晶面在切削過程中的塑性域切削機理。通過對單晶鍺脆塑轉(zhuǎn)變機理的研究,獲取了單晶鍺脆塑轉(zhuǎn)變臨界切削深度。這對于深入理解單晶鍺等脆性材料納米切削機理具有重要的理論意義和實用價值。首先對單晶鍺(100)、(110)和(111)晶面進行納米壓痕仿真和實驗研究。并建立了壓痕仿真模型。對不同晶面的微觀變形機理和力學特性進行了深入探究。研究結果表明:單晶鍺(111)晶面相比于其它晶面具有較小的彈性模量和硬度值,這種現(xiàn)象實驗和仿真結論基本一致。隨著壓入深度增加,單晶鍺各晶面的硬度與彈性模量都表現(xiàn)出尺寸效應現(xiàn)象,并且在加載和卸載過程中有突進和突退現(xiàn)象發(fā)生,劃分了單晶鍺在不同加載深度下對應的不同變形階段。其次,對單晶鍺不同晶面進行變深度切削的分子動力學仿真,并建立了變深度切削模型,通過對仿真切削過程中切屑的形成和切削力的變化分析得到了單晶鍺彈性變形和塑性去除的兩個不同階段,并得到了彈塑性轉(zhuǎn)變的臨界切削厚度和切削力,(100)晶面發(fā)生彈性變形和塑性切削的臨界切削厚度和切削力分別為0.48nm和42nN。然后研究了不同的切削速度、切削厚度、切削晶面和刀具前角等加工參數(shù)對單晶鍺彈塑性變形和表面質(zhì)量的影響,從去除方式、原子變化、勢能和切削力變化的角度分析,得出了不同切削參數(shù)對單晶鍺內(nèi)部結構變形和表面質(zhì)量的影響機制,以及不同晶面的各向異性差異。最后,通過單晶鍺納米刻劃實驗,確定了單晶鍺脆塑轉(zhuǎn)變的臨界切削深度和范圍及變化規(guī)律,并對切削過程中的影響因素進行了分析。同時針對單晶鍺刻劃中的各向異性現(xiàn)象進行了不同晶面的刻劃實驗,總結脆塑轉(zhuǎn)變臨界切削深度的各向異性。并對單晶鍺脆塑轉(zhuǎn)變臨界切削深度進行了理論預測。結果表明:(100)晶面因其具有最小表面密度、最深脆塑轉(zhuǎn)變深度,在劃痕過程中發(fā)生脆塑轉(zhuǎn)變最晚,而且隨著劃痕速度的增加,脆塑轉(zhuǎn)變臨界深度和臨界載荷也相應增加。
[Abstract]:With the development of micro and nano processing technology, brittle materials such as single crystal germanium have been widely used in infrared optics, micro electromechanical systems and other high-tech fields. The surface processing accuracy of these fields has reached nanometer order of magnitude. This needs the ultra-precision processing theory and the method as the support. In the process of nanocrystalline machining, in order to remove the brittle materials such as germanium by plastic cutting and obtain high quality optical surfaces, the key point is to control the conditions to achieve brittle plastic transition, which often requires the depth of cutting to be controlled in nanometer order. Because single crystal germanium is a hard brittle material and anisotropy exists, it is very important to determine the critical cutting thickness of brittle plastic transition to realize brittle plastic transition and to cut a uniformly smooth surface. However, the plastic domain cutting of single crystal germanium and other brittle materials has not formed a unified theoretical understanding and processing methods. In this paper, the plastic cutting mechanism of single crystal germanium in different crystal faces in cutting process has been studied by means of molecular dynamics simulation, nano-indentation and scratch experiments and theoretical analysis. The critical cutting depth of single crystal germanium brittle plastic transition was obtained by studying the mechanism of single crystal germanium brittle plastic transition. It has important theoretical significance and practical value for further understanding the mechanism of nanoscale cutting of single crystal germanium and other brittle materials. At first, the nanocrystalline indentation simulation and experimental study of single crystal germanium (100), (110) and (111) crystal face were carried out. A simulation model of indentation is established. The microscopic deformation mechanism and mechanical properties of different crystal planes were studied. The results show that the values of elastic modulus and hardness of single crystal germanium (111) crystal face are smaller than those of other crystal masks, which is consistent with the experimental and simulation results. With the increase of indentation depth, the hardness and elastic modulus of each plane of single crystal germanium show the phenomenon of size effect, and during loading and unloading, the phenomenon of breakout and sudden retreat occurs. The different deformation stages of single crystal germanium at different loading depths were divided. Secondly, the molecular dynamics simulation of variable depth cutting on different crystal faces of single crystal germanium was carried out, and the model of variable depth cutting was established. Two different stages of elastic deformation and plastic removal of single crystal germanium were obtained by analyzing the formation of chip and the change of cutting force in the process of simulated cutting. The critical cutting thickness and cutting force of elastic-plastic transformation are obtained. The critical cutting thickness and cutting force of (100) elastic deformation and plastic cutting are 0.48nm and 42 N, respectively. Then, the effects of different cutting speed, cutting thickness, cutting crystal plane and cutting tool front angle on the elastoplastic deformation and surface quality of single crystal germanium are studied. The changes of removal mode, atomic change, potential energy and cutting force are analyzed. The influence mechanism of different cutting parameters on the deformation and surface quality of single crystal germanium was obtained, and the anisotropy of different crystal planes was also obtained. Finally, the critical cutting depth and range of single crystal germanium brittle-ductile transition and its variation law were determined by the experiment of single crystal germanium nanocrystalline delineation, and the influencing factors in the cutting process were analyzed. At the same time, the anisotropy of single crystal germanium has been studied and the anisotropy of critical cutting depth of brittle plastic transition has been summarized. The critical cutting depth of single crystal germanium brittle plastic transition was predicted theoretically. The results show that: (100) because of its minimum surface density and the deepest depth of brittle plastic transition, the brittle plastic transition occurs late in the scratch process, and the critical depth and critical load of brittle plastic transition increase with the increase of scratch velocity.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN304.11

【參考文獻】

相關期刊論文 前10條

1 丁子成;李淑娟;李梓;崔丹;;SiC單晶刻劃過程的脆塑性轉(zhuǎn)變特征研究[J];人工晶體學報;2016年11期

2 楊曉京;趙彪;李勇;李明;;利用納米壓痕法研究單晶鍺的力學行為[J];熱加工工藝;2016年16期

3 毛杰偉;劉文浩;王增鵬;;基于分子動力學單晶鍺的納米壓痕特性分析[J];納米技術與精密工程;2015年06期

4 楊曉京;李勇;谷漢卿;張衛(wèi)星;;微納米尺度單晶鍺表面切削加工特性[J];有色金屬工程;2015年04期

5 楊曉京;劉艷榮;楊小江;方聰聰;;納米尺度單晶鍺各向異性摩擦磨損性能試驗研究[J];稀有金屬材料與工程;2015年08期

6 謝富華;郭曉云;陳家軒;魏天路;;分子動力學模擬及其在納米加工中的應用[J];黑龍江科學;2014年03期

7 楊曉京;劉艷榮;楊小江;方聰聰;;單晶鍺各向異性力學性能實驗[J];農(nóng)業(yè)機械學報;2014年05期

8 王棟;馮平法;張承龍;張建富;;磷酸二氫鉀晶體微尺度力學行為試驗研究[J];機械工程學報;2013年18期

9 王棟;馮平法;張承龍;張建富;;KDP晶體各向異性對劃痕特性影響的實驗研究[J];人工晶體學報;2012年03期

10 魯春朋;高航;滕曉輯;郭東明;王景賀;王奔;康仁科;;磷酸二氫鉀單晶體納米壓痕的力學行為[J];機械工程學報;2010年17期

相關博士學位論文 前1條

1 李德剛;基于分子動力學的單晶硅納米加工機理及影響因素研究[D];哈爾濱工業(yè)大學;2008年

相關碩士學位論文 前5條

1 朱幫迎;單晶硅超精密切削仿真與實驗研究[D];哈爾濱工業(yè)大學;2015年

2 楊小江;單晶銅納米接觸過程分子動力學及多尺度模擬研究[D];昆明理工大學;2014年

3 夏曉光;鍺單晶超精密加工各向異性的影響研究[D];昆明理工大學;2014年

4 王健強;單晶鍺六棱柱轉(zhuǎn)鼓超精密切削加工工藝研究[D];長春理工大學;2012年

5 劉倩倩;微納米尺度表面殘余應力的分子動力學研究[D];沈陽航空航天大學;2011年

,

本文編號:2178884

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/2178884.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶1a80f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com