天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

具有倒裝及堆疊技術(shù)的DrMOS封裝工藝研究

發(fā)布時(shí)間:2018-07-23 20:02
【摘要】:功率芯片組封裝必須妥善解決散熱問題,堆疊封裝尤其需要重視,因?yàn)槎询B使散熱面積縮小,熱積聚現(xiàn)象將更加明顯,有關(guān)這一類問題的研究報(bào)道很多,但是功率器件堆疊封裝的產(chǎn)品并不多見,因此,如何在現(xiàn)有技術(shù)體系中通過結(jié)構(gòu)設(shè)計(jì)、流程重整和關(guān)鍵工藝改良解決上述問題,是這一類新產(chǎn)品開發(fā)過程中必須面對(duì)的課題。本項(xiàng)目研究圍繞一種新型功率器件模組產(chǎn)品QFN3.5x5的堆疊封裝技術(shù)開發(fā)展開,該模組包含兩個(gè)MOSFET功率器件芯片和一個(gè)控制電路IC芯片,研究的目標(biāo)是形成散熱結(jié)構(gòu)合理的堆疊封裝架構(gòu),以便在體積顯著縮小的同時(shí),維持良好熱穩(wěn)定性,重點(diǎn)是開發(fā)堆疊封裝成套工藝,完成模組封裝和關(guān)鍵特性測(cè)試。為此,首先通過論證確立了堆疊封裝的整體結(jié)構(gòu)設(shè)計(jì),然后通過Abaqus軟件進(jìn)行仿真分析,優(yōu)化封裝結(jié)構(gòu);接著,針對(duì)該優(yōu)化的封裝結(jié)構(gòu),提出封裝工藝流程設(shè)計(jì)方案,據(jù)此整合已有單元工藝,優(yōu)化關(guān)鍵單項(xiàng)技術(shù),形成模塊封裝成套工藝,完成模組批量試生產(chǎn)及熱應(yīng)力特性測(cè)試。所提出的整體封裝架構(gòu)是在主體的銅引線框架雙側(cè)表面分別貼裝一塊MOSFET功率芯片,然后在上管芯之上堆疊控制電路IC芯片,再通過引線鍵合互連并塑封。采用導(dǎo)熱能力突出的銅片作為主體結(jié)構(gòu)就是為了更好地解決功率芯片的熱量導(dǎo)出問題。封裝工藝全流程可以分為兩個(gè)部分,即晶圓級(jí)預(yù)處理工藝模塊和組裝鍵合工藝模塊。晶圓級(jí)預(yù)處理工藝包括以下主要工序:晶圓正面化學(xué)鍍NiAu--植高鉛錫球--回流焊--清洗--晶圓正面用環(huán)氧樹脂塑封--正面減薄露出鉛錫電極--晶圓背面減薄--蒸鍍Ti Ni Ag金屬層。組裝鍵合工藝模塊流程如下:用高鉛焊錫料倒裝粘結(jié)下管芯片--用高鉛焊錫料粘結(jié)上管芯片和銅片--清洗--堆疊IC芯片到銅片上--固化絕緣膠--引線鍵合--塑封--后道切割等。圍繞如何打通上述封裝工藝全流程,實(shí)現(xiàn)良好封裝效果,在現(xiàn)有的DrMOS封裝工藝線基礎(chǔ)上,重點(diǎn)研究了高鉛錫球植球工藝、晶圓正面環(huán)氧樹脂塑封工藝、下管芯片高鉛焊錫料倒裝粘結(jié)工藝、上管芯片高鉛焊錫料粘結(jié)銅片工藝、以及清洗工藝等單項(xiàng)技術(shù)。其中,氋鉛錫球植球借用成熟的絲網(wǎng)印刷技術(shù),根據(jù)本產(chǎn)品的特點(diǎn)開發(fā)了專用的絲網(wǎng)以符合產(chǎn)品的要求。圓晶減薄有助于快速散熱,但是減薄操作容易發(fā)生碎裂或其他破損,影響成品率,晶圓正面的環(huán)氧樹脂作為一種支撐,可以在芯片很薄的情況下保護(hù)其不易受損,通過系統(tǒng)優(yōu)化,使該工藝達(dá)到可以工業(yè)化生產(chǎn)的程度也為將來芯片進(jìn)一步減薄創(chuàng)造了條件。高鉛焊錫料倒裝粘結(jié)下管芯容易出現(xiàn)點(diǎn)膠不穩(wěn)定的問題,通過對(duì)點(diǎn)膠過程的細(xì)致分析,根據(jù)點(diǎn)膠頭的孔徑選擇合理的點(diǎn)膠高度有助于穩(wěn)定工藝效果,較大的孔徑對(duì)穩(wěn)定的點(diǎn)膠非常重要。高鉛焊錫料粘結(jié)上管芯片設(shè)計(jì)了框架卡槽來對(duì)銅片進(jìn)行定位,防止銅片旋轉(zhuǎn),提高了產(chǎn)品的良品率。清洗工藝研究了市面上比較流行的清洗藥水和清洗參數(shù)對(duì)產(chǎn)品后續(xù)引線鍵合的影響,指明了優(yōu)化的參數(shù)和藥水型號(hào)。本文根據(jù)上述結(jié)構(gòu)設(shè)計(jì)和工藝的研究,將優(yōu)化方案整合到整體的工藝流程里,確定了這種新型驅(qū)動(dòng)功率器件模組工藝的制造流程。通過工藝參數(shù)優(yōu)化提升了單項(xiàng)工藝穩(wěn)定可重復(fù)性,然后采用如上所述的工藝制造了一種新型的驅(qū)動(dòng)電源管理器件模組(DrMOS)模型采用專業(yè)的電子熱分析有限元軟件Flothermal,研究了高密度封裝DrMOS模塊在PCB板上集成典型設(shè)計(jì)的溫度分布,提出了新型DrMOS模塊應(yīng)用設(shè)計(jì)的一些建議。對(duì)封裝產(chǎn)品取樣測(cè)試表明,樣品在典型功率負(fù)載下的溫度分布和熱應(yīng)力變形均在設(shè)計(jì)預(yù)期和應(yīng)用允許的范圍之內(nèi),功率效率顯著提升,這充分說明利用多種先進(jìn)封裝技術(shù)完成的本項(xiàng)新產(chǎn)品,在體積顯著降低的同時(shí)性能得到提升,開發(fā)獲得成功。
[Abstract]:The power chip package package must properly solve the heat dissipation problem, and the stack package should be paid more attention, because the stack makes the heat dissipation area narrow, the heat accumulation phenomenon will be more obvious. There are many reports about this kind of problem. But the products of power device stacking package are not common. Therefore, how to design the structure in the existing technology system, Process reforming and key process improvement to solve the above problems is a subject that must be faced in the development of this kind of new product. This project is developed around a new type of power device module product QFN3.5x5 stacked package technology, which includes two MOSFET power devices core and a control circuit IC chip. It is a stacked package structure that forms a reasonable heat dissipation structure so as to maintain good thermal stability while reducing the volume significantly. The focus is to develop a stack package process, complete module package and key characteristic test. For this reason, the whole structure design of stacked package is established by demonstration, and then the simulation is carried out through Abaqus software. Then, the packaging structure is optimized. Then, in view of the optimized package structure, the package process flow design scheme is put forward to integrate the existing unit process, optimize the key single item technology, form the package package process, complete the module batch production and thermal stress characteristics test. The overall package architecture is the copper lead frame of the main body. A MOSFET power chip is mounted on both sides of the surface, then the control circuit IC chip is stacked above the upper tube core, and then the lead bonding is used to interconnect and seal. The copper sheet with the outstanding thermal conductivity is used as the main structure to better solve the heat export problem of the power chip. The whole process of the packaging process can be divided into two parts. Wafer level pre treatment process module and assembly bonding process module. The wafer level preprocessing technology includes the following main processes: wafer front chemical plating NiAu-- high lead tin balls - reflow soldering - Cleaning - epoxy resin sealing on the front of the wafer -- the front thin exposed lead tin electrode - the back of wafer surface thinning - Ti Ni Ag metal layer. Assembly bonding process The module flow is as follows: using high lead solder paste to bond the pipe chip - using high lead solder to bond tube chip and copper chip - Cleaning - stacked IC chip to copper chip - curing insulating adhesive - lead bonding - plastic seal - back cut, etc. On the basis of the art line, it focuses on the technology of high lead tin ball planting, the plastic sealing process of the epoxy resin in the front of the wafer, the bonding process of the high lead solder material in the pipe chip, the technology of the bonding copper sheet of the high lead solder material on the pipe chip, and the cleaning technology. A special screen is developed to meet the requirements of the product. The thinning of the circular crystal helps to heat the heat quickly, but the thinning operation is easily broken or other breakage, affecting the yield. The epoxy resin on the front of the wafer can be used as a support and can not be easily damaged under the thin chip of the chip. The process can be optimized by system optimization. The degree of industrial production also creates conditions for further thinning of chips in the future. The high lead solder paste chip designed the frame card slot to locate the copper sheet, prevent the copper sheet from rotated and improve the product's good product rate. The cleaning process has studied the influence of the popular cleaning water and cleaning parameters on the following lead bonding of the product, pointing out the optimized parameters and the model of the medicine water. This paper is based on this paper. In the study of the structure design and process, the optimization scheme is integrated into the whole process flow, and the manufacturing process of the new driving power device module is determined. The stability and repeatability of the single process are improved by optimizing the process parameters. Then a new type of power management device is made by the technology described above. The model module (DrMOS) model uses the specialized electronic thermal analysis finite element software Flothermal to study the temperature distribution of the typical design of the high density package DrMOS module on the PCB board, and puts forward some suggestions for the application design of the new DrMOS module. The force deformation is within the range of design expectation and application, and the power efficiency is greatly improved. This fully illustrates the new product completed by various advanced packaging technology. The performance is improved while the volume is significantly reduced, and the development is successful.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN405

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 翁壽松;;幾種新的封裝工藝[J];電子與封裝;2007年02期

2 張華洪;鄢勝虎;;電子封裝工藝及過程管控體系[J];電子工業(yè)專用設(shè)備;2011年07期

3 姚秀華;劉笛;金元石;;黑瓷封裝工藝研究[J];微處理機(jī);2010年01期

4 鐘傳鵬;;大功率LED熒光膠封裝工藝對(duì)其顯色性能的影響[J];現(xiàn)代顯示;2009年08期

5 鐘傳鵬;;大功率LED熒光膠封裝工藝對(duì)其顯色性能的影響[J];現(xiàn)代顯示;2011年11期

6 欽永堂;;電子器件間互聯(lián)與封裝工藝技術(shù)分析[J];電子制作;2013年07期

7 Benjamin Jordan;;IC封裝的過去與未來[J];中國(guó)電子商情(基礎(chǔ)電子);2011年04期

8 Peland Koh;;高精度封裝工藝的基板輸送技術(shù)[J];電子工業(yè)專用設(shè)備;2007年03期

9 趙義坤;;無鹵素工藝在封裝工藝上的應(yīng)用[J];科技傳播;2010年24期

10 陳小兵;;電子器件間互聯(lián)與封裝工藝技術(shù)分析[J];科技傳播;2013年10期

相關(guān)會(huì)議論文 前2條

1 余彬海;李緒峰;;大功率LED封裝工藝技術(shù)新發(fā)展及對(duì)材料的要求[A];LED產(chǎn)業(yè)及其材料技術(shù)市場(chǎng)高層論壇論文集[C];2010年

2 高松信;武德勇;呂文強(qiáng);;高功率激光二極管封裝工藝的穩(wěn)定性[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年

相關(guān)重要報(bào)紙文章 前1條

1 長(zhǎng)電科技股份有限公司技術(shù)總監(jiān) 梁志忠;MIS封裝工藝使金線消耗量降低三成[N];中國(guó)電子報(bào);2010年

相關(guān)博士學(xué)位論文 前1條

1 關(guān)榮鋒;MEMS器件設(shè)計(jì)、封裝工藝及應(yīng)用研究[D];華中科技大學(xué);2005年

相關(guān)碩士學(xué)位論文 前9條

1 陳鑫;封裝工藝中的銅線鍵合研究[D];上海交通大學(xué);2014年

2 潘華;具有倒裝及堆疊技術(shù)的DrMOS封裝工藝研究[D];上海交通大學(xué);2015年

3 高勖;Power QFN型開關(guān)芯片的封裝工藝及其可靠性研究[D];天津大學(xué);2010年

4 李長(zhǎng)春;LED封裝工藝設(shè)計(jì)及優(yōu)化[D];華南理工大學(xué);2011年

5 費(fèi)春潮;低介電常數(shù)介質(zhì)膜對(duì)器件封裝工藝的影響和封裝工藝的優(yōu)化[D];復(fù)旦大學(xué);2009年

6 何中偉;MCM-C實(shí)用先進(jìn)組裝封裝工藝制造技術(shù)研究[D];南京理工大學(xué);2006年

7 張雨秋;雙列直插型低功耗智能功率模塊封裝工藝缺陷分析與改善[D];上海交通大學(xué);2008年

8 趙霞焱;LED封裝工藝結(jié)構(gòu)對(duì)光色參量及散熱系統(tǒng)的影響研究[D];西安電子科技大學(xué);2013年

9 劉海;用于油墨固化的紫外LED光源封裝技術(shù)研究[D];華中科技大學(xué);2009年



本文編號(hào):2140496

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/2140496.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶49961***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com