具有倒裝及堆疊技術(shù)的DrMOS封裝工藝研究
[Abstract]:The power chip package package must properly solve the heat dissipation problem, and the stack package should be paid more attention, because the stack makes the heat dissipation area narrow, the heat accumulation phenomenon will be more obvious. There are many reports about this kind of problem. But the products of power device stacking package are not common. Therefore, how to design the structure in the existing technology system, Process reforming and key process improvement to solve the above problems is a subject that must be faced in the development of this kind of new product. This project is developed around a new type of power device module product QFN3.5x5 stacked package technology, which includes two MOSFET power devices core and a control circuit IC chip. It is a stacked package structure that forms a reasonable heat dissipation structure so as to maintain good thermal stability while reducing the volume significantly. The focus is to develop a stack package process, complete module package and key characteristic test. For this reason, the whole structure design of stacked package is established by demonstration, and then the simulation is carried out through Abaqus software. Then, the packaging structure is optimized. Then, in view of the optimized package structure, the package process flow design scheme is put forward to integrate the existing unit process, optimize the key single item technology, form the package package process, complete the module batch production and thermal stress characteristics test. The overall package architecture is the copper lead frame of the main body. A MOSFET power chip is mounted on both sides of the surface, then the control circuit IC chip is stacked above the upper tube core, and then the lead bonding is used to interconnect and seal. The copper sheet with the outstanding thermal conductivity is used as the main structure to better solve the heat export problem of the power chip. The whole process of the packaging process can be divided into two parts. Wafer level pre treatment process module and assembly bonding process module. The wafer level preprocessing technology includes the following main processes: wafer front chemical plating NiAu-- high lead tin balls - reflow soldering - Cleaning - epoxy resin sealing on the front of the wafer -- the front thin exposed lead tin electrode - the back of wafer surface thinning - Ti Ni Ag metal layer. Assembly bonding process The module flow is as follows: using high lead solder paste to bond the pipe chip - using high lead solder to bond tube chip and copper chip - Cleaning - stacked IC chip to copper chip - curing insulating adhesive - lead bonding - plastic seal - back cut, etc. On the basis of the art line, it focuses on the technology of high lead tin ball planting, the plastic sealing process of the epoxy resin in the front of the wafer, the bonding process of the high lead solder material in the pipe chip, the technology of the bonding copper sheet of the high lead solder material on the pipe chip, and the cleaning technology. A special screen is developed to meet the requirements of the product. The thinning of the circular crystal helps to heat the heat quickly, but the thinning operation is easily broken or other breakage, affecting the yield. The epoxy resin on the front of the wafer can be used as a support and can not be easily damaged under the thin chip of the chip. The process can be optimized by system optimization. The degree of industrial production also creates conditions for further thinning of chips in the future. The high lead solder paste chip designed the frame card slot to locate the copper sheet, prevent the copper sheet from rotated and improve the product's good product rate. The cleaning process has studied the influence of the popular cleaning water and cleaning parameters on the following lead bonding of the product, pointing out the optimized parameters and the model of the medicine water. This paper is based on this paper. In the study of the structure design and process, the optimization scheme is integrated into the whole process flow, and the manufacturing process of the new driving power device module is determined. The stability and repeatability of the single process are improved by optimizing the process parameters. Then a new type of power management device is made by the technology described above. The model module (DrMOS) model uses the specialized electronic thermal analysis finite element software Flothermal to study the temperature distribution of the typical design of the high density package DrMOS module on the PCB board, and puts forward some suggestions for the application design of the new DrMOS module. The force deformation is within the range of design expectation and application, and the power efficiency is greatly improved. This fully illustrates the new product completed by various advanced packaging technology. The performance is improved while the volume is significantly reduced, and the development is successful.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN405
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翁壽松;;幾種新的封裝工藝[J];電子與封裝;2007年02期
2 張華洪;鄢勝虎;;電子封裝工藝及過程管控體系[J];電子工業(yè)專用設(shè)備;2011年07期
3 姚秀華;劉笛;金元石;;黑瓷封裝工藝研究[J];微處理機(jī);2010年01期
4 鐘傳鵬;;大功率LED熒光膠封裝工藝對(duì)其顯色性能的影響[J];現(xiàn)代顯示;2009年08期
5 鐘傳鵬;;大功率LED熒光膠封裝工藝對(duì)其顯色性能的影響[J];現(xiàn)代顯示;2011年11期
6 欽永堂;;電子器件間互聯(lián)與封裝工藝技術(shù)分析[J];電子制作;2013年07期
7 Benjamin Jordan;;IC封裝的過去與未來[J];中國(guó)電子商情(基礎(chǔ)電子);2011年04期
8 Peland Koh;;高精度封裝工藝的基板輸送技術(shù)[J];電子工業(yè)專用設(shè)備;2007年03期
9 趙義坤;;無鹵素工藝在封裝工藝上的應(yīng)用[J];科技傳播;2010年24期
10 陳小兵;;電子器件間互聯(lián)與封裝工藝技術(shù)分析[J];科技傳播;2013年10期
相關(guān)會(huì)議論文 前2條
1 余彬海;李緒峰;;大功率LED封裝工藝技術(shù)新發(fā)展及對(duì)材料的要求[A];LED產(chǎn)業(yè)及其材料技術(shù)市場(chǎng)高層論壇論文集[C];2010年
2 高松信;武德勇;呂文強(qiáng);;高功率激光二極管封裝工藝的穩(wěn)定性[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
相關(guān)重要報(bào)紙文章 前1條
1 長(zhǎng)電科技股份有限公司技術(shù)總監(jiān) 梁志忠;MIS封裝工藝使金線消耗量降低三成[N];中國(guó)電子報(bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 關(guān)榮鋒;MEMS器件設(shè)計(jì)、封裝工藝及應(yīng)用研究[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前9條
1 陳鑫;封裝工藝中的銅線鍵合研究[D];上海交通大學(xué);2014年
2 潘華;具有倒裝及堆疊技術(shù)的DrMOS封裝工藝研究[D];上海交通大學(xué);2015年
3 高勖;Power QFN型開關(guān)芯片的封裝工藝及其可靠性研究[D];天津大學(xué);2010年
4 李長(zhǎng)春;LED封裝工藝設(shè)計(jì)及優(yōu)化[D];華南理工大學(xué);2011年
5 費(fèi)春潮;低介電常數(shù)介質(zhì)膜對(duì)器件封裝工藝的影響和封裝工藝的優(yōu)化[D];復(fù)旦大學(xué);2009年
6 何中偉;MCM-C實(shí)用先進(jìn)組裝封裝工藝制造技術(shù)研究[D];南京理工大學(xué);2006年
7 張雨秋;雙列直插型低功耗智能功率模塊封裝工藝缺陷分析與改善[D];上海交通大學(xué);2008年
8 趙霞焱;LED封裝工藝結(jié)構(gòu)對(duì)光色參量及散熱系統(tǒng)的影響研究[D];西安電子科技大學(xué);2013年
9 劉海;用于油墨固化的紫外LED光源封裝技術(shù)研究[D];華中科技大學(xué);2009年
,本文編號(hào):2140496
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/2140496.html