平面饋入式多層腔體濾波器研究
本文選題:毫米波 + 接口平面化; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:隨著通信技術(shù)的向前發(fā)展,尤其是移動(dòng)互聯(lián)網(wǎng)的迅速崛起,海量的數(shù)據(jù)需要借助于通信設(shè)備進(jìn)行傳輸。微波頻譜資源已經(jīng)不能滿足當(dāng)前的社會(huì)要求,進(jìn)一步開(kāi)發(fā)高頻頻譜資源已經(jīng)是行業(yè)的趨勢(shì)。濾波器在整個(gè)系統(tǒng)中充當(dāng)著選頻的作用,它性能的好壞直接影響著通信質(zhì)量。腔體濾波器在高頻頻段仍具有高Q值,濾波器帶內(nèi)損耗較平面濾波器有很大的優(yōu)勢(shì)。因此,在高頻頻段腔體濾波器占據(jù)主導(dǎo)地位,然而濾波器體積大、不易于同其他器件連接等原因制約著其發(fā)展前景。MEMS、LTCC等技術(shù)的出現(xiàn)在一定程度上解決了這一難題,但是用這些工藝制作出的濾波器價(jià)格昂貴、加工周期長(zhǎng)。本文針對(duì)腔體濾波器接口的平面化和小型化問(wèn)題展開(kāi)研究,致力于平面饋入式的腔體濾波器。在設(shè)計(jì)上,利用諧振腔之間的交叉耦合和部分諧振器采用新的結(jié)構(gòu),盡可能減小濾波器的體積。在工藝上,為了實(shí)現(xiàn)接口的平面化將外部電路印制在PCB基片上,通過(guò)基片背面開(kāi)槽將能量耦合到諧振腔中。本文根據(jù)濾波器的基本原理和耦合理論設(shè)計(jì)、加工和測(cè)試了多款濾波器。主要的內(nèi)容可概括為:第一,對(duì)金屬諧振腔和耦合結(jié)構(gòu)進(jìn)行討論,成功的設(shè)計(jì)了一款Ku波段多層腔體濾波器,其結(jié)構(gòu)比較簡(jiǎn)單。為了實(shí)現(xiàn)接口平面化,將外部耦合電路印制在PCB基板上然后通過(guò)槽耦合到諧振腔內(nèi);為了盡量減小腔體的平面面積將六個(gè)諧振腔分三層垂直堆疊,每層兩個(gè)諧振腔。第二,對(duì)半波長(zhǎng)懸梁結(jié)構(gòu)諧振理論進(jìn)行深入研究,成功的設(shè)計(jì)了三款新型Ka波段多層腔體濾波器,濾波器結(jié)構(gòu)相對(duì)有些復(fù)雜。為了實(shí)現(xiàn)接口平面化,將外部耦合電路印制在PCB基板上然后通過(guò)槽耦合到諧振腔內(nèi);濾波器諧振結(jié)構(gòu)長(zhǎng)度為半波長(zhǎng)TEM波,這種類(lèi)型的濾波器較傳統(tǒng)波導(dǎo)類(lèi)型濾波器有更小的體積和更寬的阻帶。第三,利用MEMS先進(jìn)的技術(shù)工藝設(shè)計(jì)、制作了兩款W波段的腔體濾波器,濾波器結(jié)構(gòu)為四個(gè)并排相連的諧振腔組成。通過(guò)比較體現(xiàn)了廣義切比雪夫?yàn)V波器具有更好的性能。
[Abstract]:With the development of communication technology, especially the rapid rise of mobile Internet, huge amounts of data need to be transmitted by means of communication devices. Microwave spectrum resources can not meet the current social requirements, further development of high frequency spectrum resources has been the trend of the industry. The filter acts as the frequency selector in the whole system, and its performance directly affects the communication quality. The cavity filter still has a high Q value in the high frequency band, and the in-band loss of the filter has a great advantage over the plane filter. Therefore, cavity filter occupies the dominant position in the high frequency band. However, the large size of the filter, which is difficult to connect with other devices and other reasons, restricts the development prospects of the filter. The appearance of the technology, such as MEMS / LTCC, solves this problem to a certain extent. But the filter made by these processes is expensive and has a long processing period. In this paper, we focus on the planarization and miniaturization of cavity filter interface, and focus on the planar feed-in cavity filter. In design, the cross-coupling between resonators and the new structure of partial resonators are used to minimize the size of the filter. In the process, the external circuit is printed on the PCB substrate in order to realize the planarization of the interface, and the energy is coupled to the resonator through the slotted back of the substrate. According to the basic principle of filter and coupling theory, several filters are machined and tested in this paper. The main contents can be summarized as follows: first, the metal resonator and the coupling structure are discussed, and a Ku band multilayer cavity filter is successfully designed, the structure of which is relatively simple. In order to realize the interface planarization, the external coupling circuit is printed on the PCB substrate and coupled to the resonator through the slot. In order to minimize the plane area of the cavity, the six resonators are stacked vertically in three layers, with two resonators in each layer. Secondly, the resonance theory of half-wavelength cantilever structure is deeply studied, and three new Ka-band multilayer cavity filters are successfully designed. The structure of the filter is relatively complex. In order to realize the interface planarization, the external coupling circuit is printed on the PCB substrate and coupled to the resonator through the slot. This type of filter has smaller volume and wider stopband than conventional waveguide filter. Thirdly, two W-band cavity filters are fabricated using the advanced MEMS technology. The filter structure is composed of four resonators connected side by side. The comparison shows that the generalized Chebyshev filter has better performance.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 何文希;宋志杰;;CW脈沖回波信號(hào)的最小方差無(wú)畸變響應(yīng)自適應(yīng)檢測(cè)[J];聲學(xué)技術(shù);2014年02期
相關(guān)博士學(xué)位論文 前3條
1 賈定宏;電磁可調(diào)以及多層SIW濾波器研究[D];西南交通大學(xué);2017年
2 李飛;并聯(lián)型NPC三電平有源電力濾波器關(guān)鍵技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2017年
3 張歡慶;基于隨機(jī)有限集的多目標(biāo)跟蹤及航跡維持算法研究[D];江南大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 汪龍;平面饋入式多層腔體濾波器研究[D];電子科技大學(xué);2017年
2 胡南;基于表面等離子激元的多功能矩形腔濾波器的設(shè)計(jì)與優(yōu)化[D];蘭州大學(xué);2017年
3 王乾豐;熱光可調(diào)諧濾波器及其關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2017年
4 陳建男;消逝模腔可調(diào)濾波器研究[D];電子科技大學(xué);2017年
5 毋茜;可重構(gòu)濾波器的研究與設(shè)計(jì)[D];電子科技大學(xué);2017年
6 梁碩;基于新型諧振器的微帶濾波器設(shè)計(jì)[D];電子科技大學(xué);2017年
7 何超;基于表面等離子體激元的濾波器與解波分復(fù)用器理論研究[D];西南大學(xué);2017年
8 馬鍇;基于環(huán)形諧振器的新型可調(diào)控多通道濾波器[D];哈爾濱工業(yè)大學(xué);2017年
9 張潔;小型化抗過(guò)載射頻收發(fā)機(jī)技術(shù)研究[D];電子科技大學(xué);2017年
10 馬明明;微波平面多通帶濾波器的研究[D];電子科技大學(xué);2017年
,本文編號(hào):2113165
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/2113165.html